765,853 research outputs found

    AI in space: Past, present, and possible futures

    Get PDF
    While artificial intelligence (AI) has become increasingly present in recent space applications, new missions being planned will require even more incorporation of AI techniques. In this paper, we survey some of the progress made to date in implementing such programs, some current directions and issues, and speculate about the future of AI in space scenarios. We also provide examples of how thinkers from the realm of science fiction have envisioned AI's role in various aspects of space exploration

    Artificial intelligence approaches to astronomical observation scheduling

    Get PDF
    Automated scheduling will play an increasing role in future ground- and space-based observatory operations. Due to the complexity of the problem, artificial intelligence technology currently offers the greatest potential for the development of scheduling tools with sufficient power and flexibility to handle realistic scheduling situations. Summarized here are the main features of the observatory scheduling problem, how artificial intelligence (AI) techniques can be applied, and recent progress in AI scheduling for Hubble Space Telescope

    NASA SpaceCube Next-Generation Artificial-Intelligence Computing for STP-H9-SCENIC on ISS

    Get PDF
    Recently, Artificial Intelligence (AI) and Machine Learning (ML) capabilities have seen an exponential increase in interest from academia and industry that can be a disruptive, transformative development for future missions. Specifically, AI/ML concepts for edge computing can be integrated into future missions for autonomous operation, constellation missions, and onboard data analysis. However, using commercial AI software frameworks onboard spacecraft is challenging because traditional radiation-hardened processors and common spacecraft processors cannot provide the necessary onboard processing capability to effectively deploy complex AI models. Advantageously, embedded AI microchips being developed for the mobile market demonstrate remarkable capability and follow similar size, weight, and power constraints that could be imposed on a space-based system. Unfortunately, many of these devices have not been qualified for use in space. Therefore, Space Test Program - Houston 9 - SpaceCube Edge-Node Intelligent Collaboration (STP-H9-SCENIC) will demonstrate inflight, cutting-edge AI applications on multiple space-based devices for next-generation onboard intelligence. SCENIC will characterize several embedded AI devices in a relevant space environment and will provide NASA and DoD with flight heritage data and lessons learned for developers seeking to enable AI/ML on future missions. Finally, SCENIC also includes new CubeSat form-factor GPS and SDR cards for guidance and navigation

    Paper Session I-A - Employing Artificial Intelligence to Meet Space Requirements

    Get PDF
    In January 1989, AFSTC began the Artificial Intelligence (AI) Initiative as a means of accomplishing two objectives: 1) to determine requirements in the Air Force space community that could best be met employing AI techniques and 2) to ensure current programs were adequate to meet these requirements. The approach was to determine requirements by surveying the users, identify current programs, and then identify redundancies and omissions for the purpose of recommending a future course of action. Ten requirements were identified as being well-suited for AI techniques. Three of these requirements were determined to have high payoff and be attainable in the near term. The three requirements are range scheduling, intelligent consoles for satellite control, and intelligent computer aided training. In identifying current projects, it was found that the majority of the space related AI work is performed by NASA. Projects at the Jet Propulsion Laboratory, Johnson Space Center, and Lewis Research Center were found to be directly applicable to Air Force requirements. Sharing of space-related technology is currently being addressed through the Space Technology Interdependency Group. This paper discusses the results of the AI Initiative including the ten requirements and related projects. Also discussed are the future plans for AI in AFSTC

    Rapid prototyping and AI programming environments applied to payload modeling

    Get PDF
    This effort focused on using artificial intelligence (AI) programming environments and rapid prototyping to aid in both space flight manned and unmanned payload simulation and training. Significant problems addressed are the large amount of development time required to design and implement just one of these payload simulations and the relative inflexibility of the resulting model to accepting future modification. Results of this effort have suggested that both rapid prototyping and AI programming environments can significantly reduce development time and cost when applied to the domain of payload modeling for crew training. The techniques employed are applicable to a variety of domains where models or simulations are required

    Expert operator's associate: A knowledge based system for spacecraft control

    Get PDF
    The Expert Operator's Associate (EOA) project is presented which studies the applicability of expert systems for day-to-day space operations. A prototype expert system is developed, which operates on-line with an existing spacecraft control system at the European Space Operations Centre, and functions as an 'operator's assistant' in controlling satellites. The prototype is demonstrated using an existing real-time simulation model of the MARECS-B2 telecommunication satellite. By developing a prototype system, the extent to which reliability and effectivens of operations can be enhanced by AI based support is examined. In addition the study examines the questions of acquisition and representation of the 'knowledge' for such systems, and the feasibility of 'migration' of some (currently) ground-based functions into future spaceborne autonomous systems
    corecore