1,164 research outputs found

    Mild solutions of semilinear elliptic equations in Hilbert spaces

    Full text link
    This paper extends the theory of regular solutions (C1C^1 in a suitable sense) for a class of semilinear elliptic equations in Hilbert spaces. The notion of regularity is based on the concept of GG-derivative, which is introduced and discussed. A result of existence and uniqueness of solutions is stated and proved under the assumption that the transition semigroup associated to the linear part of the equation has a smoothing property, that is, it maps continuous functions into GG-differentiable ones. The validity of this smoothing assumption is fully discussed for the case of the Ornstein-Uhlenbeck transition semigroup and for the case of invertible diffusion coefficient covering cases not previously addressed by the literature. It is shown that the results apply to Hamilton-Jacobi-Bellman (HJB) equations associated to infinite horizon optimal stochastic control problems in infinite dimension and that, in particular, they cover examples of optimal boundary control of the heat equation that were not treatable with the approaches developed in the literature up to now

    Characterisation of matrix entropies

    Full text link
    The notion of matrix entropy was introduced by Tropp and Chen with the aim of measuring the fluctuations of random matrices. It is a certain entropy functional constructed from a representing function with prescribed properties, and Tropp and Chen gave some examples. We give several abstract characterisations of matrix entropies together with a sufficient condition in terms of the second derivative of their representing function.Comment: Major revision. We found an error in the previous version that we cannot repair. It implies that we no longer can be certain that the sufficient condition of operator convexity of the second derivative of a matrix entropy is also necessary. We added more abstract characterisations of matrix entropies and improved the analysis of the concrete example

    Funnel control for a moving water tank

    Get PDF
    We study tracking control for a moving water tank system, which is modelled using the Saint-Venant equations. The output is given by the position of the tank and the control input is the force acting on it. For a given reference signal, the objective is to achieve that the tracking error evolves within a prespecified performance funnel. Exploiting recent results in funnel control we show that it suffices to show that the operator associated with the internal dynamics of the system is causal, locally Lipschitz continuous and maps bounded functions to bounded functions. To show these properties we consider the linearized Saint-Venant equations in an abstract framework and show that it corresponds to a regular well-posed linear system, where the inverse Laplace transform of the transfer function defines a measure with bounded total variation.Comment: 11 page

    Forward-Invariance and Wong-Zakai Approximation for Stochastic Moving Boundary Problems

    Full text link
    We discuss a class of stochastic second-order PDEs in one space-dimension with an inner boundary moving according to a possibly non-linear, Stefan-type condition. We show that proper separation of phases is attained, i.e., the solution remains negative on one side and positive on the other side of the moving interface, when started with the appropriate initial conditions. To extend results from deterministic settings to the stochastic case, we establish a Wong-Zakai type approximation. After a coordinate transformation the problems are reformulated and analysed in terms of stochastic evolution equations on domains of fractional powers of linear operators.Comment: 46 page

    Multilevel quadrature for elliptic problems on random domains by the coupling of FEM and BEM

    Get PDF
    Elliptic boundary value problems which are posed on a random domain can be mapped to a fixed, nominal domain. The randomness is thus transferred to the diffusion matrix and the loading. While this domain mapping method is quite efficient for theory and practice, since only a single domain discretisation is needed, it also requires the knowledge of the domain mapping. However, in certain applications, the random domain is only described by its random boundary, while the quantity of interest is defined on a fixed, deterministic subdomain. In this setting, it thus becomes necessary to compute a random domain mapping on the whole domain, such that the domain mapping is the identity on the fixed subdomain and maps the boundary of the chosen fixed, nominal domain on to the random boundary. To overcome the necessity of computing such a mapping, we therefore couple the finite element method on the fixed subdomain with the boundary element method on the random boundary. We verify the required regularity of the solution with respect to the random domain mapping for the use of multilevel quadrature, derive the coupling formulation, and show by numerical results that the approach is feasible
    • …
    corecore