774,912 research outputs found

    Stein's method, Malliavin calculus, Dirichlet forms and the fourth moment theorem

    Full text link
    The fourth moment theorem provides error bounds of the order E(F4)−3\sqrt{{\mathbb E}(F^4) - 3} in the central limit theorem for elements FF of Wiener chaos of any order such that E(F2)=1{\mathbb E}(F^2) = 1. It was proved by Nourdin and Peccati (2009) using Stein's method and the Malliavin calculus. It was also proved by Azmoodeh, Campese and Poly (2014) using Stein's method and Dirichlet forms. This paper is an exposition on the connections between Stein's method and the Malliavin calculus and between Stein's method and Dirichlet forms, and on how these connections are exploited in proving the fourth moment theorem

    Fourth moment sum rule for the charge correlations of a two-component classical plasma

    Get PDF
    We consider an ionic fluid made with two species of mobile particles carrying either a positive or a negative charge. We derive a sum rule for the fourth moment of equilibrium charge correlations. Our method relies on the study of the system response to the potential created by a weak external charge distribution with slow spatial variations. The induced particle densities, and the resulting induced charge density, are then computed within density functional theory, where the free energy is expanded in powers of the density gradients. The comparison with the predictions of linear response theory provides a thermodynamical expression for the fourth moment of charge correlations, which involves the isothermal compressibility as well as suitably defined partial compressibilities. The familiar Stillinger-Lovett condition is also recovered as a by-product of our method, suggesting that the fourth moment sum rule should hold in any conducting phase. This is explicitly checked in the low density regime, within the Abe-Meeron diagrammatical expansions. Beyond its own interest, the fourth-moment sum rule should be useful for both analyzing and understanding recently observed behaviours near the ionic critical point

    Exchangeable pairs on Wiener chaos

    Full text link
    In [14], Nourdin and Peccati combined the Malliavin calculus and Stein's method of normal approximation to associate a rate of convergence to the celebrated fourth moment theorem [19] of Nualart and Peccati. Their analysis, known as the Malliavin-Stein method nowadays, has found many applications towards stochastic geometry, statistical physics and zeros of random polynomials, to name a few. In this article, we further explore the relation between these two fields of mathematics. In particular, we construct exchangeable pairs of Brownian motions and we discover a natural link between Malliavin operators and these exchangeable pairs. By combining our findings with E. Meckes' infinitesimal version of exchangeable pairs, we can give another proof of the quantitative fourth moment theorem. Finally, we extend our result to the multidimensional case.Comment: 19 pages, submitte

    The Vanishing Moment Method for Fully Nonlinear Second Order Partial Differential Equations: Formulation, Theory, and Numerical Analysis

    Full text link
    The vanishing moment method was introduced by the authors in [37] as a reliable methodology for computing viscosity solutions of fully nonlinear second order partial differential equations (PDEs), in particular, using Galerkin-type numerical methods such as finite element methods, spectral methods, and discontinuous Galerkin methods, a task which has not been practicable in the past. The crux of the vanishing moment method is the simple idea of approximating a fully nonlinear second order PDE by a family (parametrized by a small parameter \vepsi) of quasilinear higher order (in particular, fourth order) PDEs. The primary objectives of this book are to present a detailed convergent analysis for the method in the radial symmetric case and to carry out a comprehensive finite element numerical analysis for the vanishing moment equations (i.e., the regularized fourth order PDEs). Abstract methodological and convergence analysis frameworks of conforming finite element methods and mixed finite element methods are first developed for fully nonlinear second order PDEs in general settings. The abstract frameworks are then applied to three prototypical nonlinear equations, namely, the Monge-Amp\`ere equation, the equation of prescribed Gauss curvature, and the infinity-Laplacian equation. Numerical experiments are also presented for each problem to validate the theoretical error estimate results and to gauge the efficiency of the proposed numerical methods and the vanishing moment methodology.Comment: 141 pages, 16 figure
    • …
    corecore