6,248 research outputs found

    High-order implicit palindromic discontinuous Galerkin method for kinetic-relaxation approximation

    Get PDF
    We construct a high order discontinuous Galerkin method for solving general hyperbolic systems of conservation laws. The method is CFL-less, matrix-free, has the complexity of an explicit scheme and can be of arbitrary order in space and time. The construction is based on: (a) the representation of the system of conservation laws by a kinetic vectorial representation with a stiff relaxation term; (b) a matrix-free, CFL-less implicit discontinuous Galerkin transport solver; and (c) a stiffly accurate composition method for time integration. The method is validated on several one-dimensional test cases. It is then applied on two-dimensional and three-dimensional test cases: flow past a cylinder, magnetohydrodynamics and multifluid sedimentation

    A parallel multigrid solver for multi-patch Isogeometric Analysis

    Full text link
    Isogeometric Analysis (IgA) is a framework for setting up spline-based discretizations of partial differential equations, which has been introduced around a decade ago and has gained much attention since then. If large spline degrees are considered, one obtains the approximation power of a high-order method, but the number of degrees of freedom behaves like for a low-order method. One important ingredient to use a discretization with large spline degree, is a robust and preferably parallelizable solver. While numerical evidence shows that multigrid solvers with standard smoothers (like Gauss Seidel) does not perform well if the spline degree is increased, the multigrid solvers proposed by the authors and their co-workers proved to behave optimal both in the grid size and the spline degree. In the present paper, the authors want to show that those solvers are parallelizable and that they scale well in a parallel environment.Comment: The first author would like to thank the Austrian Science Fund (FWF) for the financial support through the DK W1214-04, while the second author was supported by the FWF grant NFN S117-0

    A 3D radiative transfer framework: I. non-local operator splitting and continuum scattering problems

    Full text link
    We describe a highly flexible framework to solve 3D radiation transfer problems in scattering dominated environments based on a long characteristics piece-wise parabolic formal solution and an operator splitting method. We find that the linear systems are efficiently solved with iterative solvers such as Gauss-Seidel and Jordan techniques. We use a sphere-in-a-box test model to compare the 3D results to 1D solutions in order to assess the accuracy of the method. We have implemented the method for static media, however, it can be used to solve problems in the Eulerian-frame for media with low velocity fields.Comment: A&A, in press. 14 pages, 19 figures. Full resolution figures available at ftp://phoenix.hs.uni-hamburg.de/preprints/3DRT_paper1.pdf HTML version (low res figures) at http://hobbes.hs.uni-hamburg.de/~yeti/PAPERS/3drt_paper1/index.htm

    Sympiler: Transforming Sparse Matrix Codes by Decoupling Symbolic Analysis

    Full text link
    Sympiler is a domain-specific code generator that optimizes sparse matrix computations by decoupling the symbolic analysis phase from the numerical manipulation stage in sparse codes. The computation patterns in sparse numerical methods are guided by the input sparsity structure and the sparse algorithm itself. In many real-world simulations, the sparsity pattern changes little or not at all. Sympiler takes advantage of these properties to symbolically analyze sparse codes at compile-time and to apply inspector-guided transformations that enable applying low-level transformations to sparse codes. As a result, the Sympiler-generated code outperforms highly-optimized matrix factorization codes from commonly-used specialized libraries, obtaining average speedups over Eigen and CHOLMOD of 3.8X and 1.5X respectively.Comment: 12 page

    Multigrid waveform relaxation for the time-fractional heat equation

    Get PDF
    In this work, we propose an efficient and robust multigrid method for solving the time-fractional heat equation. Due to the nonlocal property of fractional differential operators, numerical methods usually generate systems of equations for which the coefficient matrix is dense. Therefore, the design of efficient solvers for the numerical simulation of these problems is a difficult task. We develop a parallel-in-time multigrid algorithm based on the waveform relaxation approach, whose application to time-fractional problems seems very natural due to the fact that the fractional derivative at each spatial point depends on the values of the function at this point at all earlier times. Exploiting the Toeplitz-like structure of the coefficient matrix, the proposed multigrid waveform relaxation method has a computational cost of O(NMlog(M))O(N M \log(M)) operations, where MM is the number of time steps and NN is the number of spatial grid points. A semi-algebraic mode analysis is also developed to theoretically confirm the good results obtained. Several numerical experiments, including examples with non-smooth solutions and a nonlinear problem with applications in porous media, are presented
    corecore