7,234 research outputs found

    The Walk Distances in Graphs

    Get PDF
    The walk distances in graphs are defined as the result of appropriate transformations of the ∑k=0∞(tA)k\sum_{k=0}^\infty(tA)^k proximity measures, where AA is the weighted adjacency matrix of a graph and tt is a sufficiently small positive parameter. The walk distances are graph-geodetic; moreover, they converge to the shortest path distance and to the so-called long walk distance as the parameter tt approaches its limiting values. We also show that the logarithmic forest distances which are known to generalize the resistance distance and the shortest path distance are a subclass of walk distances. On the other hand, the long walk distance is equal to the resistance distance in a transformed graph.Comment: Accepted for publication in Discrete Applied Mathematics. 26 pages, 3 figure

    Locating Depots for Capacitated Vehicle Routing

    Full text link
    We study a location-routing problem in the context of capacitated vehicle routing. The input is a set of demand locations in a metric space and a fleet of k vehicles each of capacity Q. The objective is to locate k depots, one for each vehicle, and compute routes for the vehicles so that all demands are satisfied and the total cost is minimized. Our main result is a constant-factor approximation algorithm for this problem. To achieve this result, we reduce to the k-median-forest problem, which generalizes both k-median and minimum spanning tree, and which might be of independent interest. We give a (3+c)-approximation algorithm for k-median-forest, which leads to a (12+c)-approximation algorithm for the above location-routing problem, for any constant c>0. The algorithm for k-median-forest is just t-swap local search, and we prove that it has locality gap 3+2/t; this generalizes the corresponding result known for k-median. Finally we consider the "non-uniform" k-median-forest problem which has different cost functions for the MST and k-median parts. We show that the locality gap for this problem is unbounded even under multi-swaps, which contrasts with the uniform case. Nevertheless, we obtain a constant-factor approximation algorithm, using an LP based approach.Comment: 12 pages, 1 figur
    • …
    corecore