77,461 research outputs found

    The Fixed Vertex Property for Graphs

    Get PDF
    Analogous to the fixed point property for ordered sets, a graph has the fixed vertex property if each of its endomorphisms has a fixed vertex. The fixed point theory for ordered sets can be embedded into the fixed vertex theory for graphs. Therefore, the potential for cross-fertilization should be explored

    Linear rank-width of distance-hereditary graphs II. Vertex-minor obstructions

    Full text link
    In the companion paper [Linear rank-width of distance-hereditary graphs I. A polynomial-time algorithm, Algorithmica 78(1):342--377, 2017], we presented a characterization of the linear rank-width of distance-hereditary graphs, from which we derived an algorithm to compute it in polynomial time. In this paper, we investigate structural properties of distance-hereditary graphs based on this characterization. First, we prove that for a fixed tree TT, every distance-hereditary graph of sufficiently large linear rank-width contains a vertex-minor isomorphic to TT. We extend this property to bigger graph classes, namely, classes of graphs whose prime induced subgraphs have bounded linear rank-width. Here, prime graphs are graphs containing no splits. We conjecture that for every tree TT, every graph of sufficiently large linear rank-width contains a vertex-minor isomorphic to TT. Our result implies that it is sufficient to prove this conjecture for prime graphs. For a class Φ\Phi of graphs closed under taking vertex-minors, a graph GG is called a vertex-minor obstruction for Φ\Phi if G∉ΦG\notin \Phi but all of its proper vertex-minors are contained in Φ\Phi. Secondly, we provide, for each k≥2k\ge 2, a set of distance-hereditary graphs that contains all distance-hereditary vertex-minor obstructions for graphs of linear rank-width at most kk. Also, we give a simpler way to obtain the known vertex-minor obstructions for graphs of linear rank-width at most 11.Comment: 38 pages, 13 figures, 1 table, revised journal version. A preliminary version of Section 5 appeared in the proceedings of WG1

    Extremal \u3cem\u3eH\u3c/em\u3e-Colorings of Trees and 2-connected Graphs

    Get PDF
    For graphs G and H, an H-coloring of G is an adjacency preserving map from the vertices of G to the vertices of H. H-colorings generalize such notions as independent sets and proper colorings in graphs. There has been much recent research on the extremal question of finding the graph(s) among a fixed family that maximize or minimize the number of H-colorings. In this paper, we prove several results in this area. First, we find a class of graphs H with the property that for each H∈H, the n-vertex tree that minimizes the number of H -colorings is the path Pn. We then present a new proof of a theorem of Sidorenko, valid for large n, that for every H the star K1,n−1 is the n-vertex tree that maximizes the number of H-colorings. Our proof uses a stability technique which we also use to show that for any non-regular H (and certain regular H ) the complete bipartite graph K2,n−2 maximizes the number of H-colorings of n -vertex 2-connected graphs. Finally, we show that the cycle Cn has the most proper q-colorings among all n-vertex 2-connected graphs

    Limits of Ordered Graphs and their Applications

    Full text link
    The emerging theory of graph limits exhibits an analytic perspective on graphs, showing that many important concepts and tools in graph theory and its applications can be described more naturally (and sometimes proved more easily) in analytic language. We extend the theory of graph limits to the ordered setting, presenting a limit object for dense vertex-ordered graphs, which we call an \emph{orderon}. As a special case, this yields limit objects for matrices whose rows and columns are ordered, and for dynamic graphs that expand (via vertex insertions) over time. Along the way, we devise an ordered locality-preserving variant of the cut distance between ordered graphs, showing that two graphs are close with respect to this distance if and only if they are similar in terms of their ordered subgraph frequencies. We show that the space of orderons is compact with respect to this distance notion, which is key to a successful analysis of combinatorial objects through their limits. We derive several applications of the ordered limit theory in extremal combinatorics, sampling, and property testing in ordered graphs. In particular, we prove a new ordered analogue of the well-known result by Alon and Stav [RS\&A'08] on the furthest graph from a hereditary property; this is the first known result of this type in the ordered setting. Unlike the unordered regime, here the random graph model G(n,p)G(n, p) with an ordering over the vertices is \emph{not} always asymptotically the furthest from the property for some pp. However, using our ordered limit theory, we show that random graphs generated by a stochastic block model, where the blocks are consecutive in the vertex ordering, are (approximately) the furthest. Additionally, we describe an alternative analytic proof of the ordered graph removal lemma [Alon et al., FOCS'17].Comment: Added a new application: An Alon-Stav type result on the furthest ordered graph from a hereditary property; Fixed and extended proof sketch of the removal lemma applicatio

    Spatial Mixing of Coloring Random Graphs

    Full text link
    We study the strong spatial mixing (decay of correlation) property of proper qq-colorings of random graph G(n,d/n)G(n, d/n) with a fixed dd. The strong spatial mixing of coloring and related models have been extensively studied on graphs with bounded maximum degree. However, for typical classes of graphs with bounded average degree, such as G(n,d/n)G(n, d/n), an easy counterexample shows that colorings do not exhibit strong spatial mixing with high probability. Nevertheless, we show that for q≥αd+βq\ge\alpha d+\beta with α>2\alpha>2 and sufficiently large β=O(1)\beta=O(1), with high probability proper qq-colorings of random graph G(n,d/n)G(n, d/n) exhibit strong spatial mixing with respect to an arbitrarily fixed vertex. This is the first strong spatial mixing result for colorings of graphs with unbounded maximum degree. Our analysis of strong spatial mixing establishes a block-wise correlation decay instead of the standard point-wise decay, which may be of interest by itself, especially for graphs with unbounded degree

    An extension of Tur\'an's Theorem, uniqueness and stability

    Get PDF
    We determine the maximum number of edges of an nn-vertex graph GG with the property that none of its rr-cliques intersects a fixed set M⊂V(G)M\subset V(G). For (r−1)∣M∣≥n(r-1)|M|\ge n, the (r−1)(r-1)-partite Turan graph turns out to be the unique extremal graph. For (r−1)∣M∣<n(r-1)|M|<n, there is a whole family of extremal graphs, which we describe explicitly. In addition we provide corresponding stability results.Comment: 12 pages, 1 figure; outline of the proof added and other referee's comments incorporate
    • …
    corecore