149 research outputs found

    (Bio)Sensing Strategies Based on Ionic Liquid-Functionalized Carbon Nanocomposites for Pharmaceuticals: Towards Greener Electrochemical Tools

    Get PDF
    The interaction of carbon-based nanomaterials and ionic liquids (ILs) has been thoroughly exploited for diverse electroanalytical solutions since the first report in 2003. This combination, either through covalent or non-covalent functionalization, takes advantage of the unique characteristics inherent to each material, resulting in synergistic effects that are conferred to the electrochemical (bio)sensing system. From one side, carbon nanomaterials offer miniaturization capacity with enhanced electron transfer rates at a reduced cost, whereas from the other side, ILs contribute as ecological dispersing media for the nanostructures, improving conductivity and biocompatibility. The present review focuses on the use of this interesting type of nanocomposites for the development of (bio)sensors specifically for pharmaceutical detection, with emphasis on the analytical (bio)sensing features. The literature search displayed the conjugation of more than 20 different ILs and several carbon nanomaterials (MWCNT, SWCNT, graphene, carbon nanofibers, fullerene, and carbon quantum dots, among others) that were applied for a large set (about 60) of pharmaceutical compounds. This great variability causes a straightforward comparison between sensors to be a challenging task. Undoubtedly, electrochemical sensors based on the conjugation of carbon nanomaterials with ILs can potentially be established as sustainable analytical tools and viable alternatives to more traditional methods, especially concerning in situ environmental analysisThis work was financed by FEDER—Fundo Europeu de Desenvolvimento Regional funds through the COMPETE 2020—Operacional Programme for Competitiveness and Internationalization (POCI), and by Portuguese funds through FCT—Fundação para a CiĂȘncia e a Tecnologia in the framework of the project POCI-01-0145-FEDER-029547—PTDC/ASP-PES/29547/2017. This work received support by UIDB/50006/2020, UIDP/50006/ 2020 and LA/P/0008/2020 by the Fundação para a CiĂȘncia e a Tecnologia (FCT), MinistĂ©rio da CiĂȘncia, Tecnologia e Ensino Superior (MCTES) through national funds. T.M.B.F. Oliveira thanks the Brazilian agencies CNPq (Proc. 420261/2018-4 and 308108/2020-5) and FUNCAP (Proc. BP4-0172-00111.01.00/20) for their financial support, and he is grateful to UFCA and CAPES (Finance code 001) for supporting his investigations. F.W.P. Ribeiro thanks all support provided by the UFCA’s Pro-Rectory of Research and Innovation and the funding provided by FUNCAP-BPI (Proc. BP4-0172-00150.01.00/20) and CNPq (Proc. 406135/2018-5). P. de Lima-Neto thanks the financial support received from CNPq projects 408626/2018-6 and 304152/2018-8 and FUNCAP project FCT-00141-00011.01.00/18. A. N. Correia thanks the financial support received from CNPq projects: 305136/2018-6 and 405596/2018-9info:eu-repo/semantics/publishedVersio

    ELECTROCHEMICAL BIOSENSOR FOR BRCA1 GENE AND TAMOXIFEN INTERACTION

    Get PDF
    The electrochemical nanobiosensor was designed for the determination of specific DNA sequences related to breast cancer 1 (BRCA1) gene and interaction between Anticancer Drug Tamoxifen (TAM) and related DNA sequences by using pencil graphite electrode (PGE), bare and multi-walled carbon nanotube (MWCNT) contained screen printed carbon electrodes (SPEs) for the first time. Here, biomolecular interaction between TAM and DNA was investigated differential pulse voltammetry (DPV) based on not only guanine signal but also TAM oxidation response. It was obtained that the guanine signal at about +1.00V obtained from probe DNA or hybrid DNA shows a remerkable increase after the interaction with TAM. Additionally, it was found that TAM interact with guanine bases and TAM signal which is near the guanine oxidation area also increase after the interaction with DNA. Consequently, the prepared biosensor offer suitable platform for the analysis of DNA hybridization and TAM-DNA interaction sensitively

    Optical biosensors - Illuminating the path to personalized drug dosing

    Get PDF
    Optical biosensors are low-cost, sensitive and portable devices that are poised to revolutionize the medical industry. Healthcare monitoring has already been transformed by such devices, with notable recent applications including heart rate monitoring in smartwatches and COVID-19 lateral flow diagnostic test kits. The commercial success and impact of existing optical sensors has galvanized research in expanding its application in numerous disciplines. Drug detection and monitoring seeks to benefit from the fast-approaching wave of optical biosensors, with diverse applications ranging from illicit drug testing, clinical trials, monitoring in advanced drug delivery systems and personalized drug dosing. The latter has the potential to significantly improve patients' lives by minimizing toxicity and maximizing efficacy. To achieve this, the patient's serum drug levels must be frequently measured. Yet, the current method of obtaining such information, namely therapeutic drug monitoring (TDM), is not routinely practiced as it is invasive, expensive, time-consuming and skilled labor-intensive. Certainly, optical sensors possess the capabilities to challenge this convention. This review explores the current state of optical biosensors in personalized dosing with special emphasis on TDM, and provides an appraisal on recent strategies. The strengths and challenges of optical biosensors are critically evaluated, before concluding with perspectives on the future direction of these sensors

    APPLICATIONS OF MOLECULARLY IMPRINTED POLYMER IN SEPARATION AND ANALYTICAL CHEMISTRY

    Get PDF

    Synthesis of imprinted polymers for the detection of tamoxifen or its metabolites and evaluation of their potential as drug carriers.

    Get PDF
    PhDRecent advances in the area of nanotechnology have led to interesting applications of nanomaterials in medicine, especially in the areas of imaging and treatment. This thesis presents the development of two molecularly imprinted polymers (MIPs) based on the same fluorescent functional monomer. One MIP, prepared in the bulk format, is investigated for its ability to detect tamoxifen and its metabolites. The other MIP synthesised in the nanogel format, holds the potential to be used as pH-responsive drug delivery system. Four objectives were identified within this project. The first was the design and synthesis of fluorescent functional monomer. Two coumarin derivatives carrying a polymerisable unit, for covalent bonding within the polymer, and a carboxylic moiety, for interaction site with the template, were synthesised and characterised. However, only one of them (the VCC: 6-vynilcoumarin-4-carboxylic acid) showed high fluorescent yield and was selected as functional monomer. The second objective involved the development of a detection system based on bulk MIP containing the VCC fluorescent monomer. This system proved effective in generating a detectable signal upon binding the analytes. The signal was observed as a quenching of the polymer fluorescence and it was proportional to the amount of target molecules detected. The third objective was the preparation of tamoxifen-imprinted nanogels for potential application in the drug delivery field. The optimisation of the procedure gave a set of NIP/MIP with the desired solubility, particle size and fluorescence emission. These nanogels were then employed in the last objective, which involved the toxicity study and evaluation of the drug loading on of transgenic line of zebrafish. The nanogels were non-toxic at the tested concentrations and the presence of tamoxifen was confirmed

    What Is Left for Real-Life Lactate Monitoring? Current Advances in Electrochemical Lactate (Bio)Sensors for Agrifood and Biomedical Applications

    Get PDF
    Monitoring of lactate is spreading from the evident clinical environment, where its role as a biomarker is notorious, to the agrifood ambit as well. In the former, lactate concentration can serve as a useful indicator of several diseases (e.g., tumour development and lactic acidosis) and a relevant value in sports performance for athletes, among others. In the latter, the spotlight is placed on the food control, bringing to the table meaningful information such as decaying product detection and stress monitoring of species. No matter what purpose is involved, electrochemical (bio)sensors stand as a solid and suitable choice. However, for the time being, this statement seems to be true only for discrete measurements. The reality exposes that real and continuous lactate monitoring is still a troublesome goal. In this review, a critical overview of electrochemical lactate (bio)sensors for clinical and agrifood situations is performed. Additionally, the transduction possibilities and different sensor designs approaches are also discussed. The main aim is to reflect the current state of the art and to indicate relevant advances (and bottlenecks) to keep in mind for further development and the final achievement of this highly worthy objective

    Quantum dots-amplified electrochemical cytochrome P450 phenotype sensor for tamoxifen, a breast cancer drug

    Get PDF
    Philosophiae Doctor - PhDBreast cancer is regarded as the most common cancer in South Africa and its rate of occurrence is increasing. About one in every 31 South African women are at the risk of developing breast cancer and early diagnosis and treatment guarantee 90% survival rate. Tamoxifen is the drugs of choice for the treatment of all stages of breast cancer. The drug binds with estrogen receptor (ER) to minimize the transcription of estrogen dependent genes. However, nearly 50% of ER-positive breast cancer patients either become resistant or fail to respond to tamoxifen resulting in a serious clinical challenge in breast cancer management. The Grand Health Challenges of South Africa includes the development of cost effective diagnostic systems suitable for early detection of diseases and drug resistivity for timely invention and better patient management

    Graphene-Based Sensors for the Detection of Bioactive Compounds: A Review

    Get PDF
    Over the last years, different nanomaterials have been investigated to design highly selective and sensitive sensors, reaching nano/picomolar concentrations of biomolecules, which is crucial for medical sciences and the healthcare industry in order to assess physiological and metabolic parameters. The discovery of graphene (G) has unexpectedly impulsed research on developing cost-effective electrode materials owed to its unique physical and chemical properties, including high specific surface area, elevated carrier mobility, exceptional electrical and thermal conductivity, strong stiffness and strength combined with flexibility and optical transparency. G and its derivatives, including graphene oxide (GO) and reduced graphene oxide (rGO), are becoming an important class of nanomaterials in the area of optical and electrochemical sensors. The presence of oxygenated functional groups makes GO nanosheets amphiphilic, facilitating chemical functionalization. G-based nanomaterials can be easily combined with different types of inorganic nanoparticles, including metals and metal oxides, quantum dots, organic polymers, and biomolecules, to yield a wide range of nanocomposites with enhanced sensitivity for sensor applications. This review provides an overview of recent research on G-based nanocomposites for the detection of bioactive compounds, providing insights on the unique advantages offered by G and its derivatives. Their synthesis process, functionalization routes, and main properties are summarized, and the main challenges are also discussed. The antioxidants selected for this review are melatonin, gallic acid, tannic acid, resveratrol, oleuropein, hydroxytyrosol, tocopherol, ascorbic acid, and curcumin. They were chosen owed to their beneficial properties for human health, including antibiotic, antiviral, cardiovascular protector, anticancer, anti-inflammatory, cytoprotective, neuroprotective, antiageing, antidegenerative, and antiallergic capacity. The sensitivity and selectivity of G-based electrochemical and fluorescent sensors are also examined. Finally, the future outlook for the development of G-based sensors for this type of biocompounds is outlined

    Recombinant expression of cytochrome P450-2D6 and its application in tamoxifen metabolism

    Get PDF
    Magister Scientiae - MSc (Biotechnology)Breast cancer is regarded as the most common form of cancer in women and it comprises of approximately 23 % of female cancers, while affecting women at any age range. For oestrogen receptor positive patients, tamoxifen is used as a prescribed medication for breast cancer therapy. However, tamoxifen in its natural form is not active to achieve the required treatment and prevention of breast cells proliferation. Since tamoxifen is a prodrug, it need to be converted into its active form, endoxifen, for which it is achieved by the action of the cytochrome P450 enzymes. Cytochrome P450 2D6 (CYP2D6) is a member of cytochrome P450 enzymes for which are superfamily of heme enzymes characterised by their ability to catalyse the oxidative reactions of compounds, including the pathway of tamoxifen metabolism. However, due to polymorphism that lead to inactive phenotypes of CYP2D6 in this gene, there is a challenge of diagnosing if a patient can metabolise tamoxifen or not. The current diagnostic tool, Amplichip CYP450, for CYP2D6 is based on genotypes, and it lead to uncertainness as to whether the presence of functionalCYP2D6 alleles of CYP2D6 may lead to coding of active protein, thus leading to wrong treatment measures and overdose of tamoxifen. Electrochemical techniques have provided reliable, simple, quick, and sensitive methods for the determination of drug metabolism by enzymes. Therefore, it is important to develop a CYP2D6 phenotype-based sensor to detect and tell whether a particular individual can metabolise the drug or not

    Molecularly imprinted polymer sensor systems for environmental estrogenic endocrine disrupting chemicals

    Get PDF
    Philosophiae Doctor - PhD (Chemistry)There is growing concern on endocrine disrupting compounds (EDCs). The presence of drugs in water supplies was first realized in Germany in the early 1990s when environmental scientists discovered clofibric acid. Clofibric acid has the ability to lower cholesterol in ground water below a water treatment plant. Endocrine disrupting compounds can be defined as those chemicals with the ability to alter daily functioning of the endocrine system in living organisms. There are numerous molecules that are regarded or referred to as EDCs such as but not limited to organochlorinated pesticides, industrial chemicals, plastics and plasticizers, fuels, estrogens and many other chemicals that are found in the environment or are in widespread use. 17?- estradiol is the principal estrogen found in mammals during reproductive years. Estriol is produced in large quantities during pregnancy. 17?-estradiol is the strongest, estriol the weakest. Estriol is water soluble, estrone and estradiol are not. Although estrogen is produced in women they are also at risk of over exposure to estrogen. Pesticides are extensively used today in agricultural settings to prevent and control pests. Various pesticides, including banned organochlorines (OCs) and modern non-persistent pesticides, have shown the ability to disrupt thyroid activity, disturbing the homeostasis of the thyroid system. Because these EDCs have adverse effects on health of both human and wildlife, it is imperative to develop viable costeffective analytical methods for the detection of these EDCs in complicated samples and at very low concentrations. Very high selectivity towards particular compounds is a very important property for the suitability of a detection method. This is because these compounds mostly coexist in complex matrices which makes the detection of a specific compound very challenging. It is paramount to develop highly sensitive and selective methods for the detection of these estrogens and phosphoric acid-based pesticides at trace levels
    • 

    corecore