224 research outputs found

    Effect of correlations on network controllability

    Get PDF
    A dynamical system is controllable if by imposing appropriate external signals on a subset of its nodes, it can be driven from any initial state to any desired state in finite time. Here we study the impact of various network characteristics on the minimal number of driver nodes required to control a network. We find that clustering and modularity have no discernible impact, but the symmetries of the underlying matching problem can produce linear, quadratic or no dependence on degree correlation coefficients, depending on the nature of the underlying correlations. The results are supported by numerical simulations and help narrow the observed gap between the predicted and the observed number of driver nodes in real networks

    Nonautonomous linear-quadratic dissipative control processes without uniform null controllability

    Get PDF
    ProducciĂłn CientĂ­ficaIn this paper the dissipativity of a family of linear-quadratic control processes is studied. The application of the Pontryagin Maximum Principle to this problem gives rise to a family of linear Hamiltonian systems for which the existence of an exponential dichotomy is assumed, but no condition of controllability is imposed. As a consequence, some of the systems of this family could be abnormal. Sufficient conditions for the dissipativity of the processes are provided assuming the existence of global positive solutions of the Riccati equation induced by the family of linear Hamiltonian systems or by a convenient disconjugate perturbation of it.MEC-FEDER MTM2012-30860JCYL VA118A12-

    Conjugate points in Euler's elastic problem

    Full text link
    For the classical Euler's elastic problem, conjugate points are described. Inflectional elasticae admit the first conjugate point between the first and the third inflection points. All the rest elasticae do not have conjugate points.Comment: 31 page, 10 figure

    Control efficacy of complex networks

    Get PDF
    Acknowledgements W.-X.W. was supported by CNNSF under Grant No. 61573064, and No. 61074116 the Fundamental Research Funds for the Central Universities and Beijing Nova Programme, China. Y.-C.L. was supported by ARO under Grant W911NF-14-1-0504.Peer reviewedPublisher PD
    • …
    corecore