4,421 research outputs found

    Minimum Makespan Multi-vehicle Dial-a-Ride

    Get PDF
    Dial a ride problems consist of a metric space (denoting travel time between vertices) and a set of m objects represented as source-destination pairs, where each object requires to be moved from its source to destination vertex. We consider the multi-vehicle Dial a ride problem, with each vehicle having capacity k and its own depot-vertex, where the objective is to minimize the maximum completion time (makespan) of the vehicles. We study the "preemptive" version of the problem, where an object may be left at intermediate vertices and transported by more than one vehicle, while being moved from source to destination. Our main results are an O(log^3 n)-approximation algorithm for preemptive multi-vehicle Dial a ride, and an improved O(log t)-approximation for its special case when there is no capacity constraint. We also show that the approximation ratios improve by a log-factor when the underlying metric is induced by a fixed-minor-free graph.Comment: 22 pages, 1 figure. Preliminary version appeared in ESA 200

    Dial a Ride from k-forest

    Full text link
    The k-forest problem is a common generalization of both the k-MST and the dense-kk-subgraph problems. Formally, given a metric space on nn vertices VV, with mm demand pairs V×V\subseteq V \times V and a ``target'' kmk\le m, the goal is to find a minimum cost subgraph that connects at least kk demand pairs. In this paper, we give an O(min{n,k})O(\min\{\sqrt{n},\sqrt{k}\})-approximation algorithm for kk-forest, improving on the previous best ratio of O(n2/3logn)O(n^{2/3}\log n) by Segev & Segev. We then apply our algorithm for k-forest to obtain approximation algorithms for several Dial-a-Ride problems. The basic Dial-a-Ride problem is the following: given an nn point metric space with mm objects each with its own source and destination, and a vehicle capable of carrying at most kk objects at any time, find the minimum length tour that uses this vehicle to move each object from its source to destination. We prove that an α\alpha-approximation algorithm for the kk-forest problem implies an O(αlog2n)O(\alpha\cdot\log^2n)-approximation algorithm for Dial-a-Ride. Using our results for kk-forest, we get an O(min{n,k}log2n)O(\min\{\sqrt{n},\sqrt{k}\}\cdot\log^2 n)- approximation algorithm for Dial-a-Ride. The only previous result known for Dial-a-Ride was an O(klogn)O(\sqrt{k}\log n)-approximation by Charikar & Raghavachari; our results give a different proof of a similar approximation guarantee--in fact, when the vehicle capacity kk is large, we give a slight improvement on their results.Comment: Preliminary version in Proc. European Symposium on Algorithms, 200

    Improved Bounds for Open Online Dial-a-Ride on the Line

    Get PDF
    We consider the open, non-preemptive online Dial-a-Ride problem on the real line, where transportation requests appear over time and need to be served by a single server. We give a lower bound of 2.0585 on the competitive ratio, which is the first bound that strictly separates online Dial-a-Ride on the line from online TSP on the line in terms of competitive analysis, and is the best currently known lower bound even for general metric spaces. On the other hand, we present an algorithm that improves the best known upper bound from 2.9377 to 2.6662. The analysis of our algorithm is tight

    The Merits of Sharing a Ride

    Full text link
    The culture of sharing instead of ownership is sharply increasing in individuals behaviors. Particularly in transportation, concepts of sharing a ride in either carpooling or ridesharing have been recently adopted. An efficient optimization approach to match passengers in real-time is the core of any ridesharing system. In this paper, we model ridesharing as an online matching problem on general graphs such that passengers do not drive private cars and use shared taxis. We propose an optimization algorithm to solve it. The outlined algorithm calculates the optimal waiting time when a passenger arrives. This leads to a matching with minimal overall overheads while maximizing the number of partnerships. To evaluate the behavior of our algorithm, we used NYC taxi real-life data set. Results represent a substantial reduction in overall overheads

    Workload Equity in Vehicle Routing Problems: A Survey and Analysis

    Full text link
    Over the past two decades, equity aspects have been considered in a growing number of models and methods for vehicle routing problems (VRPs). Equity concerns most often relate to fairly allocating workloads and to balancing the utilization of resources, and many practical applications have been reported in the literature. However, there has been only limited discussion about how workload equity should be modeled in VRPs, and various measures for optimizing such objectives have been proposed and implemented without a critical evaluation of their respective merits and consequences. This article addresses this gap with an analysis of classical and alternative equity functions for biobjective VRP models. In our survey, we review and categorize the existing literature on equitable VRPs. In the analysis, we identify a set of axiomatic properties that an ideal equity measure should satisfy, collect six common measures, and point out important connections between their properties and those of the resulting Pareto-optimal solutions. To gauge the extent of these implications, we also conduct a numerical study on small biobjective VRP instances solvable to optimality. Our study reveals two undesirable consequences when optimizing equity with nonmonotonic functions: Pareto-optimal solutions can consist of non-TSP-optimal tours, and even if all tours are TSP optimal, Pareto-optimal solutions can be workload inconsistent, i.e. composed of tours whose workloads are all equal to or longer than those of other Pareto-optimal solutions. We show that the extent of these phenomena should not be underestimated. The results of our biobjective analysis are valid also for weighted sum, constraint-based, or single-objective models. Based on this analysis, we conclude that monotonic equity functions are more appropriate for certain types of VRP models, and suggest promising avenues for further research.Comment: Accepted Manuscrip

    Tight Analysis of the Smartstart Algorithm for Online Dial-a-Ride on the Line

    Get PDF
    The online Dial-a-Ride problem is a fundamental online problem in a metric space, where transportation requests appear over time and may be served in any order by a single server with unit speed. Restricted to the real line, online Dial-a-Ride captures natural problems like controlling a personal elevator. Tight results in terms of competitive ratios are known for the general setting and for online TSP on the line (where source and target of each request coincide). In contrast, online Dial-a-Ride on the line has resisted tight analysis so far, even though it is a very natural online problem. We conduct a tight competitive analysis of the Smartstart algorithm that gave the best known results for the general, metric case. In particular, our analysis yields a new upper bound of 2.94 for open, non-preemptive online Dial-a-Ride on the line, which improves the previous bound of 3.41 [Krumke\u2700]. The best known lower bound remains 2.04 [SODA\u2717]. We also show that the known upper bound of 2 [STACS\u2700] regarding Smartstart\u27s competitive ratio for closed, non-preemptive online Dial-a-Ride is tight on the line
    corecore