926 research outputs found

    Myoelectric forearm prostheses: State of the art from a user-centered perspective

    Get PDF
    User acceptance of myoelectric forearm prostheses is currently low. Awkward control, lack of feedback, and difficult training are cited as primary reasons. Recently, researchers have focused on exploiting the new possibilities offered by advancements in prosthetic technology. Alternatively, researchers could focus on prosthesis acceptance by developing functional requirements based on activities users are likely to perform. In this article, we describe the process of determining such requirements and then the application of these requirements to evaluating the state of the art in myoelectric forearm prosthesis research. As part of a needs assessment, a workshop was organized involving clinicians (representing end users), academics, and engineers. The resulting needs included an increased number of functions, lower reaction and execution times, and intuitiveness of both control and feedback systems. Reviewing the state of the art of research in the main prosthetic subsystems (electromyographic [EMG] sensing, control, and feedback) showed that modern research prototypes only partly fulfill the requirements. We found that focus should be on validating EMG-sensing results with patients, improving simultaneous control of wrist movements and grasps, deriving optimal parameters for force and position feedback, and taking into account the psychophysical aspects of feedback, such as intensity perception and spatial acuity

    Simple and computationally efficient movement classification approach for EMG-controlled prosthetic hand: ANFIS vs. artificial neural network

    No full text
    The aim of this paper is to propose an exploratory study on simple, accurate and computationally efficient movement classification technique for prosthetic hand application. The surface myoelectric signals were acquired from 2 muscles—Flexor Carpi Ulnaris and Extensor Carpi Radialis of 4 normal-limb subjects. These signals were segmented and the features extracted using a new combined time-domain method of feature extraction. The fuzzy C-mean clustering method and scatter plots were used to evaluate the performance of the proposed multi-feature versus other accurate multi-features. Finally, the movements were classified using the adaptive neuro-fuzzy inference system (ANFIS) and the artificial neural network. Comparison results indicate that ANFIS not only displays higher classification accuracy (88.90%) than the artificial neural network, but it also improves computation time significantl

    Multimodal human hand motion sensing and analysis - a review

    Get PDF

    Machine Learning in Sensors and Imaging

    Get PDF
    Machine learning is extending its applications in various fields, such as image processing, the Internet of Things, user interface, big data, manufacturing, management, etc. As data are required to build machine learning networks, sensors are one of the most important technologies. In addition, machine learning networks can contribute to the improvement in sensor performance and the creation of new sensor applications. This Special Issue addresses all types of machine learning applications related to sensors and imaging. It covers computer vision-based control, activity recognition, fuzzy label classification, failure classification, motor temperature estimation, the camera calibration of intelligent vehicles, error detection, color prior model, compressive sensing, wildfire risk assessment, shelf auditing, forest-growing stem volume estimation, road management, image denoising, and touchscreens

    PCA and deep learning based myoelectric grasping control of a prosthetic hand

    Get PDF
    Background For the functional control of prosthetic hand, it is insufficient to obtain only the motion pattern information. As far as practicality is concerned, the control of the prosthetic hand force is indispensable. The application value of prosthetic hand will be greatly improved if the stable grip of prosthetic hand can be achieved. To address this problem, in this study, a bio-signal control method for grasping control of a prosthetic hand is proposed to improve patient’s sense of using prosthetic hand and the thus improving the quality of life. Methods A MYO gesture control armband is used to collect the surface electromyographic (sEMG) signals from the upper limb. The overlapping sliding window scheme are applied for data segmentation and the correlated features are extracted from each segmented data. Principal component analysis (PCA) methods are then deployed for dimension reduction. Deep neural network is used to generate sEMG-force regression model for force prediction at different levels. The predicted force values are input to a fuzzy controller for the grasping control of a prosthetic hand. A vibration feedback device is used to feed grasping force value back to patient’s arm to improve patient’s sense of using prosthetic hand and realize accurate grasping. To test the effectiveness of the scheme, 15 able-bodied subjects participated in the experiments. Results The classification results indicated that 8-channel sEMG applying all four time-domain features, with PCA reduction from 32 to 8 dimensions results in the highest classification accuracy. Based on the experimental results from 15 participants, the average recognition rate is over 95%. On the other hand, from the statistical results of standard deviation, the between-subject variations ranges from 3.58 to 1.25%, proving that the robustness and stability of the proposed approach. Conclusions The method proposed hereto control grasping power through the patient’s own sEMG signal, which achieves a high recognition rate to improve the success rate of grip and increases the sense of operation and also brings the gospel for upper extremity amputation patients

    Odontology & artificial intelligence

    Get PDF
    Neste trabalho avaliam-se os três fatores que fizeram da inteligência artificial uma tecnologia essencial hoje em dia, nomeadamente para a odontologia: o desempenho do computador, Big Data e avanços algorítmicos. Esta revisão da literatura avaliou todos os artigos publicados na PubMed até Abril de 2019 sobre inteligência artificial e odontologia. Ajudado com inteligência artificial, este artigo analisou 1511 artigos. Uma árvore de decisão (If/Then) foi executada para selecionar os artigos mais relevantes (217), e um algoritmo de cluster k-means para resumir e identificar oportunidades de inovação. O autor discute os artigos mais interessantes revistos e compara o que foi feito em inovação durante o International Dentistry Show, 2019 em Colónia. Concluiu, assim, de forma crítica que há uma lacuna entre tecnologia e aplicação clínica desta, sendo que a inteligência artificial fornecida pela indústria de hoje pode ser considerada um atraso para o clínico de amanhã, indicando-se um possível rumo para a aplicação clínica da inteligência artificial.There are three factors that have made artificial intelligence (AI) an essential technology today: the computer performance, Big Data and algorithmic advances. This study reviews the literature on AI and Odontology based on articles retrieved from PubMed. With the help of AI, this article analyses a large number of articles (a total of 1511). A decision tree (If/Then) was run to select the 217 most relevant articles-. Ak-means cluster algorithm was then used to summarize and identify innovation opportunities. The author discusses the most interesting articles on AI research and compares them to the innovation presented during the International Dentistry Show 2019 in Cologne. Three technologies available now are evaluated and three suggested options are been developed. The author concludes that AI provided by the industry today is a hold-up for the praticioner of tomorrow. The author gives his opinion on how to use AI for the profit of patients
    corecore