4,265 research outputs found

    Generalized Fibonacci cubes

    Get PDF
    AbstractGeneralized Fibonacci cube Qd(f) is introduced as the graph obtained from the d-cube Qd by removing all vertices that contain a given binary string f as a substring. In this notation, the Fibonacci cube Γd is Qd(11). The question whether Qd(f) is an isometric subgraph of Qd is studied. Embeddable and non-embeddable infinite series are given. The question is completely solved for strings f of length at most five and for strings consisting of at most three blocks. Several properties of the generalized Fibonacci cubes are deduced. Fibonacci cubes are, besides the trivial cases Qd(10) and Qd(01), the only generalized Fibonacci cubes that are median closed subgraphs of the corresponding hypercubes. For admissible strings f, the f-dimension of a graph is introduced. Several problems and conjectures are also listed

    Maximal hypercubes in Fibonacci and Lucas cubes

    Full text link
    The Fibonacci cube Γn\Gamma_n is the subgraph of the hypercube induced by the binary strings that contain no two consecutive 1's. The Lucas cube Λn\Lambda_n is obtained from Γn\Gamma_n by removing vertices that start and end with 1. We characterize maximal induced hypercubes in Γn\Gamma_n and Λn\Lambda_n and deduce for any p≤np\leq n the number of maximal pp-dimensional hypercubes in these graphs

    Infinite Randomness Phases and Entanglement Entropy of the Disordered Golden Chain

    Full text link
    Topological insulators supporting non-abelian anyonic excitations are at the center of attention as candidates for topological quantum computation. In this paper, we analyze the ground-state properties of disordered non-abelian anyonic chains. The resemblance of fusion rules of non-abelian anyons and real space decimation strongly suggests that disordered chains of such anyons generically exhibit infinite-randomness phases. Concentrating on the disordered golden chain model with nearest-neighbor coupling, we show that Fibonacci anyons with the fusion rule τ⊗τ=1⊕τ\tau\otimes\tau={\bf 1}\oplus \tau exhibit two infinite-randomness phases: a random-singlet phase when all bonds prefer the trivial fusion channel, and a mixed phase which occurs whenever a finite density of bonds prefers the τ\tau fusion channel. Real space RG analysis shows that the random-singlet fixed point is unstable to the mixed fixed point. By analyzing the entanglement entropy of the mixed phase, we find its effective central charge, and find that it increases along the RG flow from the random singlet point, thus ruling out a c-theorem for the effective central charge.Comment: 16 page

    Strong-disorder renormalization for interacting non-Abelian anyon systems in two dimensions

    Get PDF
    We consider the effect of quenched spatial disorder on systems of interacting, pinned non-Abelian anyons as might arise in disordered Hall samples at filling fractions \nu=5/2 or \nu=12/5. In one spatial dimension, such disordered anyon models have previously been shown to exhibit a hierarchy of infinite randomness phases. Here, we address systems in two spatial dimensions and report on the behavior of Ising and Fibonacci anyons under the numerical strong-disorder renormalization group (SDRG). In order to manage the topology-dependent interactions generated during the flow, we introduce a planar approximation to the SDRG treatment. We characterize this planar approximation by studying the flow of disordered hard-core bosons and the transverse field Ising model, where it successfully reproduces the known infinite randomness critical point with exponent \psi ~ 0.43. Our main conclusion for disordered anyon models in two spatial dimensions is that systems of Ising anyons as well as systems of Fibonacci anyons do not realize infinite randomness phases, but flow back to weaker disorder under the numerical SDRG treatment.Comment: 12 pages, 12 figures, 1 tabl
    • …
    corecore