41 research outputs found

    Global text mining and development of pharmacogenomic knowledge resource for precision medicine

    Get PDF
    Understanding patients' genomic variations and their effect in protecting or predisposing them to drug response phenotypes is important for providing personalized healthcare. Several studies have manually curated such genotype-phenotype relationships into organized databases from clinical trial data or published literature. However, there are no text mining tools available to extract high-accuracy information from such existing knowledge. In this work, we used a semiautomated text mining approach to retrieve a complete pharmacogenomic (PGx) resource integrating disease-drug-gene-polymorphism relationships to derive a global perspective for ease in therapeutic approaches. We used an R package, pubmed.mineR, to automatically retrieve PGx-related literature. We identified 1,753 disease types, and 666 drugs, associated with 4,132 genes and 33,942 polymorphisms collated from 180,088 publications. With further manual curation, we obtained a total of 2,304 PGx relationships. We evaluated our approach by performance (precision = 0.806) with benchmark datasets like Pharmacogenomic Knowledgebase (PharmGKB) (0.904), Online Mendelian Inheritance in Man (OMIM) (0.600), and The Comparative Toxicogenomics Database (CTD) (0.729). We validated our study by comparing our results with 362 commercially used the US- Food and drug administration (FDA)-approved drug labeling biomarkers. Of the 2,304 PGx relationships identified, 127 belonged to the FDA list of 362 approved pharmacogenomic markers, indicating that our semiautomated text mining approach may reveal significant PGx information with markers for drug response prediction. In addition, it is a scalable and state-of-art approach in curation for PGx clinical utility

    Using ODIN for a PharmGKB revalidation experiment

    Get PDF
    The need for efficient text-mining tools that support curation of the biomedical literature is ever increasing. In this article, we describe an experiment aimed at verifying whether a text-mining tool capable of extracting meaningful relationships among domain entities can be successfully integrated into the curation workflow of a major biological database. We evaluate in particular (i) the usability of the system's interface, as perceived by users, and (ii) the correlation of the ranking of interactions, as provided by the text-mining system, with the choices of the curators

    PGxO and PGxLOD: a reconciliation of pharmacogenomic knowledge of various provenances, enabling further comparison

    Get PDF
    International audienceBackgroundPharmacogenomics (PGx) studies how genomic variations impact variations in drug response phenotypes. Knowledge in pharmacogenomics is typically composed of units that have the form of ternary relationships gene variant – drug – adverse event. Such a relationship states that an adverse event may occur for patients having the specified gene variant and being exposed to the specified drug. State-of-the-art knowledge in PGx is mainly available in reference databases such as PharmGKB and reported in scientific biomedical literature. But, PGx knowledge can also be discovered from clinical data, such as Electronic Health Records (EHRs), and in this case, may either correspond to new knowledge or confirm state-of-the-art knowledge that lacks “clinical counterpart” or validation. For this reason, there is a need for automatic comparison of knowledge units from distinct sources.ResultsIn this article, we propose an approach, based on Semantic Web technologies, to represent and compare PGx knowledge units. To this end, we developed PGxO, a simple ontology that represents PGx knowledge units and their components. Combined with PROV-O, an ontology developed by the W3C to represent provenance information, PGxO enables encoding and associating provenance information to PGx relationships. Additionally, we introduce a set of rules to reconcile PGx knowledge, i.e. to identify when two relationships, potentially expressed using different vocabularies and levels of granularity, refer to the same, or to different knowledge units. We evaluated our ontology and rules by populating PGxO with knowledge units extracted from PharmGKB (2701), the literature (65,720) and from discoveries reported in EHR analysis studies (only 10, manually extracted); and by testing their similarity. We called PGxLOD (PGx Linked Open Data) the resulting knowledge base that represents and reconciles knowledge units of those various origins.ConclusionsThe proposed ontology and reconciliation rules constitute a first step toward a more complete framework for knowledge comparison in PGx. In this direction, the experimental instantiation of PGxO, named PGxLOD, illustrates the ability and difficulties of reconciling various existing knowledge sources

    Knowledge-based extraction of adverse drug events from biomedical text

    Get PDF
    Background: Many biomedical relation extraction systems are machine-learning based and have to be trained on large annotated corpora that are expensive and cumbersome to construct. We developed a knowledge-based relation extraction system that requires minimal training data, and applied the system for the extraction of adverse drug events from biomedical text. The system consists of a concept recognition module that identifies drugs and adverse effects in sentences, and a knowledg

    Using syntax features and document discourse for relation extraction on PharmGKB and CTD

    Full text link
    We present an approach to the extraction of relations between pharmacogenomics entities like drugs, genes and diseases which is based on syntax and on discourse. Particularly, discourse has not been studied widely for improving Text Mining. We learn syntactic features semi-automatically from lean document-level annotation. We show how a simple Maximum Entropy based machine learning approach helps to estimate the relevance of candidate relations based on dependency-based features found in the syntactic path connecting the involved entities. Maximum Entropy based relevance estimation of candidate pairs conditioned on syntactic features improves relation ranking by 68% relative increase measured by AUCiP/R and by 60% for TAP-k (k=10). We also show that automatically recognizing document-level discourse characteristics to expand and filter acronyms improves term recognition and interaction detection by 12% relative, measured by AUCiP/R and by TAP-k (k=10). Our pilot study uses PharmGKB and CTD as resources

    Facilitating and Enhancing Biomedical Knowledge Translation: An in Silico Approach to Patient-centered Pharmacogenomic Outcomes Research

    Get PDF
    Current research paradigms such as traditional randomized control trials mostly rely on relatively narrow efficacy data which results in high internal validity and low external validity. Given this fact and the need to address many complex real-world healthcare questions in short periods of time, alternative research designs and approaches should be considered in translational research. In silico modeling studies, along with longitudinal observational studies, are considered as appropriate feasible means to address the slow pace of translational research. Taking into consideration this fact, there is a need for an approach that tests newly discovered genetic tests, via an in silico enhanced translational research model (iS-TR) to conduct patient-centered outcomes research and comparative effectiveness research studies (PCOR CER). In this dissertation, it was hypothesized that retrospective EMR analysis and subsequent mathematical modeling and simulation prediction could facilitate and accelerate the process of generating and translating pharmacogenomic knowledge on comparative effectiveness of anticoagulation treatment plan(s) tailored to well defined target populations which eventually results in a decrease in overall adverse risk and improve individual and population outcomes. To test this hypothesis, a simulation modeling framework (iS-TR) was proposed which takes advantage of the value of longitudinal electronic medical records (EMRs) to provide an effective approach to translate pharmacogenomic anticoagulation knowledge and conduct PCOR CER studies. The accuracy of the model was demonstrated by reproducing the outcomes of two major randomized clinical trials for individualizing warfarin dosing. A substantial, hospital healthcare use case that demonstrates the value of iS-TR when addressing real world anticoagulation PCOR CER challenges was also presented

    Pharmacogenomic knowledge representation, reasoning and genome-based clinical decision support based on OWL 2 DL ontologies

    Get PDF
    Background: Every year, hundreds of thousands of patients experience treatment failure or adverse drug reactions (ADRs), many of which could be prevented by pharmacogenomic testing. However, the primary knowledge needed for clinical pharmacogenomics is currently dispersed over disparate data structures and captured in unstructured or semi-structured formalizations. This is a source of potential ambiguity and complexity, making it difficult to create reliable information technology systems for enabling clinical pharmacogenomics. Methods: We developed Web Ontology Language (OWL) ontologies and automated reasoning methodologies to meet the following goals: 1) provide a simple and concise formalism for representing pharmacogenomic knowledge, 2) finde errors and insufficient definitions in pharmacogenomic knowledge bases, 3) automatically assign alleles and phenotypes to patients, 4) match patients to clinically appropriate pharmacogenomic guidelines and clinical decision support messages and 5) facilitate the detection of inconsistencies and overlaps between pharmacogenomic treatment guidelines from different sources. We evaluated different reasoning systems and test our approach with a large collection of publicly available genetic profiles. Results: Our methodology proved to be a novel and useful choice for representing, analyzing and using pharmacogenomic data. The Genomic Clinical Decision Support (Genomic CDS) ontology represents 336 SNPs with 707 variants; 665 haplotypes related to 43 genes; 22 rules related to drug-response phenotypes; and 308 clinical decision support rules. OWL reasoning identified CDS rules with overlapping target populations but differing treatment recommendations. Only a modest number of clinical decision support rules were triggered for a collection of 943 public genetic profiles. We found significant performance differences across available OWL reasoners. Conclusions: The ontology-based framework we developed can be used to represent, organize and reason over the growing wealth of pharmacogenomic knowledge, as well as to identify errors, inconsistencies and insufficient definitions in source data sets or individual patient data. Our study highlights both advantages and potential practical issues with such an ontology-based approach

    Precision medicine and future of cancer treatment

    Get PDF
    Over the last few decades, there has been a deluge in the production of large-scale biological data mainly due to the advances in high-throughput technology. This initiated a paradigm shift on the focus in medical research. Ability to investigate molecular changes over the whole genome provided a unique opportunity in the field of translational research. This also gave rise to the concept of precision medicine which provided a strong hope for the development of better diagnostic and therapeutic tools. This is especially relevant to cancer as its incidence is increasing throughout the world. The purpose of this article is to review tools and applications of precision medicine in cancer
    corecore