37 research outputs found

    State-of-the-art in studies of glacial isostatic adjustment for the British Isles: a literature review

    Get PDF
    Understanding the effects of glacial isostatic adjustment (GIA) of the British Isles is essential for the assessment of past and future sea-level trends. GIA has been extensively examined in the literature, employing different research methods and observational data types. Geological evidence from palaeo-shorelines and undisturbed sedimentary deposits has been used to reconstruct long-term relative sea-level change since the Last Glacial Maximum. This information derived from sea-level index points has been employed to inform empirical isobase models of the uplift in Scotland using trend surface and Gaussian trend surface analysis, as well as to calibrate more theory-driven GIA models that rely on Earth mantle rheology and ice sheet history. Furthermore, current short-term rates of GIA-induced crustal motion during the past few decades have been measured using different geodetic techniques, mainly continuous GPS (CGPS) and absolute gravimetry (AG). AG-measurements are generally employed to increase the accuracy of the CGPS estimates. Synthetic aperture radar interferometry (InSAR) looks promising as a relatively new technique to measure crustal uplift in the northern parts of Great Britain, where the GIA-induced vertical land deformation has its highest rate. This literature review provides an in-depth comparison and discussion of the development of these different research approaches

    GPS and PSI integration for monitoring urban land motion

    Get PDF
    Urban ground motion due to natural or man-made geological processes is an issue of major importance for local authorities, property developers, planners and buyers. Increased knowledge of this phenomena would benefit all involved but the measurement techniques in common use have either spatial or temporal inadequacies. A technique known as Persistent Scatterer Interferometry (PSI) has been developed which can map ground motion to high precision over large areas with a temporal scale measured in years. PSI takes advantage of the high number of Synthetic Aperture Radar (SAR) images available to mitigate the atmospheric effects that inhibit standard Interferometric SAR (InSAR) techniques. This however involves assumptions about the nature of atmospheric variability, such as its randomness over time, or its spatial extent. In addition, little is known about the Persistent Scatterers (PS) themselves and PSI is only able to provide results relative to a reference PS. The reference PS point is often arbitrarily chosen and may itself be in an area undergoing ground motion, thus adding a degree of ambiguity to any relatively derived motion. The purpose of this work is to investigate possible solutions to these shortfalls and quantify any improvements made. A corner reflector network is established in the Nottingham area of the UK. A data archive is collated over three years containing Global Positioning System (GPS) data at the corner reflector sites, data from surrounding Continuous GPS (CGPS) sites and levelling data. Due to conflicts with the European Space Agency (ESA) Environmental Satellite (ENVISAT), there were insufficient SAR images to com- pute a fully integrated corner reflector PSI study. Instead, the project focussed on atmospheric correction of PSI results using absolute ZWD estimates. Zenith Wet Delay (ZWD) estimates are derived from a Precise Point Positioning (PPP) GPS processing method which does not rely on a network of ground stations and therefore produces absolute ZWD estimates which are less prone to biases and noise. These are interpolated across a PSI study area and used to mitigate the long wavelength effects of atmopheric water vapour in the PSI differential interferograms. The corrected PSI results are then compared to uncorrected results, GPS derived motion and levelling data. Results between the ZWD corrected PSI study and the uncorrected study show statistical improvements in some areas and reductions in others. Correlation factors between double-differenced levelling observations and double-differenced PSI results improve from 0.67 to 0.81. PSI deformation rates also show improvement when compared to GPS deformation rates, although some results do not satisfy statistical tests

    InSAR observations and modeling of Earth surface displacements in the Yellow River Delta (China)

    Get PDF
    Subsidence in river deltas is a complex process that has both natural and human causes (Boesch et al., 1994). The Yellow River delta is used for farming, contains an important nature reserve for wild animals especially for waterfowl, has a population of 1.64 million, and is the location of significant oil fields (Chen et al., 2012). Increasing human activities like farming and petroleum extraction are affecting the Yellow River delta, and one consequence is subsidence. This subsidence may have social, economic and environmental impacts (Syvitski et al., 2009). The purpose of this thesis is to measure the surface displacement in Yellow River delta and to investigate the causes of measured displacement. The use of Interferometric Synthetic Aperture Radar (InSAR) for Earth surface displacement mapping has increased since the 1990s when a lot of radar images become available. InSAR time series techniques identify displacement of an area between different image acquisition times. In this study, StaMPS package was employed to process Envisat ASAR images collected between 2007 and 2010. StaMPS selects only the stable pixels from interferograms to maintain the coherence signals over a long time interval. Consistent results between two descending tracks show subsidence with a mean velocity of up to 30 mm/yr in the radar line of sight direction in Gudao Town (oilfield), Gudong oilfield and Xianhe Town of the delta, and also show that subsidence is not uniform across the delta. Field investigation shows an association between areas of subsidence and of petroleum extraction. In a 9 km2 area of the Gu-Dao Oilfield in the delta, InSAR derived surface deformation is used to model the geometry, volume or pressure change of the deformation source, namely the extraction of fluids, using three different models: the spherical source Mogi type model, the finite prolate spheroid model and the poroelastic disk reservoir model. In general, good fits between InSAR observations and modelled displacements are seen. The source depths estimated in the three models agree well with the published oilfield depth. The subsidence observed in the vicinity of the oilfield is thus suggested to be caused by fluid extraction. For Mogi type model, a uniform subsidence rate of about 7 mm/yr is co-estimated. InSAR observations in Xianhe Town in the delta, which is not affected by oil extraction, also shows 8~12 mm/yr uniform subsidence. It is suggested this uniform subsidence is caused by other sources e.g. loading and sediment compaction. Since InSAR only measures relative displacement, accurate determination of small uniform rate need the reference phase provided by other observations e.g. GPS and levelling. Mogi model provides the volume change in Gudao oilfield. The ellipsoidal source and the disk reservoir model the pressure changes. Additional reservoir information e.g. material parameter will help better confine the model parameters. Although no production data is available for comparison, the volume and pressure changes obtained from the models, together with InSAR observed displacement might be of interest for oil industry, to predict future subsidence in Gudao oilfield

    Towards an Integrated Assessment of Sea-Level Observations Along the U.S. Atlantic Coast

    Get PDF
    Sea levels are rising globally due to anthropogenic climate change. However, local sea levels that impact coastal ecosystems often differ from the global trend, sometimes by a factor of two or more. Improved understanding of this regional variability provides insights into geophysical processes and has implications for coastal communities developing resilience to ongoing sea-level rise. This dissertation conducts an investigation of sea level and its contributing processes at multiple spatial scales. Focusing on primarily interannual time-scales and data-driven approaches, new data sources and technologies are utilized to reduce current uncertainties. First, sea-level trends are assessed over the global ocean and at coastlines using data from the recently launched ICESat-2 satellite. These trends agree well with independent measurements, while also filling observational gaps along undersampled coastlines and at high-latitudes. Next, the spatial focus is narrowed to the U.S. East Coast, which is experiencing exceptionally high rates of relative sea-level rise, largely due to land subsidence. By incorporating new state-of-the-art estimates of land-ice melt, an existing Bayesian hierarchical space-time model is expanded to assess the relative contributions of sea surface height and vertical land motion to 20th century relative-sea level change. Model results confirm previous findings that identified regional-scale geological processes as the primary driver of spatial variability in East Coast relative sea level. By rigorously quantifying uncertainties, constraints are placed on the current state of knowledge with clear directions for future research. Finally, small-scale vertical land motion in Hampton Roads, VA is investigated using the remote-sensing technology of Interferometric Synthetic Aperture Radar (InSAR). Two different data sources and processing strategies are implemented which independently reveal substantial rates of vertical land motion that vary over short spatial scales. The results highlight the importance of vertical land motion in exacerbating negative impacts of relative sea-level rise such as flooding and inundation. Overall, this study leverages new spaceborne sensors, an innovative statistical model, and state-of-the-art processing strategies to enhance our understanding of ongoing sea-level change

    InSAR as a tool for monitoring hydropower projects: A review

    Get PDF
    This paper provides a review of using Interferometric Synthetic Aperture Radar (InSAR), a microwave remote sensing technique, for deformation monitoring of hydroelectric power projects, a critical infrastructure that requires consistent and reliable monitoring. Almost all major dams around the world were built for the generation of hydropower. InSAR can enhance dam safety by providing timely settlement measurements at high spatial-resolution. This paper provides a holistic view of different InSAR deformation monitoring techniques such as Differential Synthetic Aperture Radar Interferometry (DInSAR), Ground-Based Synthetic Aperture Radar (GBInSAR), Persistent Scatterer Interferometric Synthetic Aperture Radar (PSInSAR), Multi-Temporal Interferometric Synthetic Aperture Radar (MTInSAR), Quasi-Persistent Scatterer Interferometric Synthetic Aperture Radar (QPSInSAR) and Small BAseline Subset (SBAS). PSInSAR, GBInSAR, MTInSAR, and DInSAR techniques were quite commonly used for deformation studies. These studies demonstrate the advantage of InSAR-based techniques over other conventional methods, which are laborious, costly, and sometimes unachievable. InSAR technology is also favoured for its capability to provide monitoring data at all times of day or night, in all-weather conditions, and particularly for wide areas with mm-scale precision. However, the method also has some disadvantages, such as the maximum deformation rate that can be monitored, and the location for monitoring cannot be dictated. Through this review, we aim to popularize InSAR technology to monitor the deformation of dams, which can also be used as an early warning method to prevent any unprecedented catastrophe. This study also discusses some case studies from southern India to demonstrate the capabilities of InSAR to indirectly monitor dam health

    The Extended Timing Annotation Dataset for Sentinel-1 - Product Description and First Evaluation Results

    Get PDF
    This article introduces the extended timing annotation dataset (ETAD) product for Sentinel-1 (S-1) which was developed in a joint effort of German Aerospace Center (DLR) and European Space Agency (ESA). It allows to correct range and azimuth timing of S-1 images for geophysical effects and for inaccuracies in synthetic aperture radar (SAR) image focusing. In combination with the precise orbit solution, these effects determine the absolute geolocation accuracy of S-1 SAR images and the relative collocation accuracy of repeat pass image stacks. ETAD contains the gridded timing corrections for the tropospheric and ionospheric path delays, the tidal-based surface displacements, and the SAR processing effects, all of which are computed for each data taken using standard models from geodesy and auxiliary atmospheric data. The ETAD product helps S-1 users to significantly improve the geolocation accuracy of the S-1 SAR products to better than 0.2 m and offers a potential solution for correcting large-scale interferometric phase variations. The product layout and product generation are described schematically. This article also reports first the results for different SAR techniques: first, the improvement in geolocation accuracy down to a few centimeters by verification of accurately surveyed corner reflector positions in the range–azimuth plane; second, the well-established offset-tracking technique, which is used for systematic ice velocity monitoring of ice sheets and glaciers, where ETAD can reduce velocity biases down to subcentimetric values; and third, the correction of atmospheric phase contributions in wide-area interferograms used for national and European ground motion services. These early results proof the added value of the ETAD corrections and that the product design is well-suited to be integrated into the processing flows of established SAR applications such as absolute ranging of targets, speckle/feature tracking, and interferometry

    Persistent scatterer interferometry to monitor mining related ground surface deformation for data-driven modelling

    Get PDF
    The monitoring, interpretation and prediction of gradual ground surface deformation are critical factors in the understanding of earth systems. In many parts of the world, particularly in coastal areas where resources are often easily transportable and where steep cliffs allow access to underlying strata, the patterns of natural ground surface deformation are complicated by mining or extraction activities. To accurately estimate the amount of sea-level rise and Its total affect on, for example, frequency of flooding or salt-water intrusion, the amount of ground surface deformation, either subsidence or uplift, need to be understood in great detail. Ground surface dynamics over an area of contemporary deep mining, IS investigated through two research objectives. A feasibility study of conventional InSAR and Persistent Scatterer InSAR (PSI) in a rural setting was carried out. Rural areas are generally avoided for the application of these techniques for the measurement of gradual ground surface deformation due to the lack of coherence between scenes. The results demonstrate that the new PSI technique significantly outperformed conventional InSAR m the detection of gradual ground surface deformation. However, limitations to the technique were identified in the low density and limited distribution of permanent scatterers. The behaviour of the deformation rate over time appears to be biased to a linear trend. Furthermore, in order to understand the link between underground mining activities and local ground surface response a data-driven model has been developed and evaluated. Based on different mining scenarios, this mode! IS able to estimate the total subsidence in a four dimensional space. It was found that local ground surface deformation can be forecasted accurately, based on an angle of draw and four variables. Five key indicators, which are the extent of die disturbed area, the total period of deformation, the peak rate, the moment of the peak rate and the total deformation, are relevant to understand the impact of underground excavations on the surface and to place it in a wider Earth system
    corecore