558 research outputs found

    PaL Diagrams: A Linear Diagram-Based Visual Language

    Get PDF
    Linear diagrams have recently been shown to be more effective than Euler diagrams when used for set-based reasoning. However, unlike the growing corpus of knowledge about formal aspects of Euler and Venn diagrams, there has been no formalisation of linear diagrams. To fill this knowledge gap, we present and formalise Point and Line (PaL) diagrams, an extension of simple linear diagrams containing points, thus providing a formal foundation for an effective visual language.We prove that PaL diagrams are exactly as expressive as monadic first-order logic with equality, gaining, as a corollary, an equivalence with the Euler diagram extension called spider diagrams. The method of proof provides translations between PaL diagrams and sentences of monadic first-order logic

    On the Completeness of Spider Diagrams Augmented with Constants

    Get PDF
    Diagrammatic reasoning can be described formally by a number of diagrammatic logics; spider diagrams are one of these, and are used for expressing logical statements about set membership and containment. Here, existing work on spider diagrams is extended to include constant spiders that represent specific individuals. We give a formal syntax and semantics for the extended diagram language before introducing a collection of reasoning rules encapsulating logical equivalence and logical consequence. We prove that the resulting logic is sound, complete and decidable

    A Normal Form for Spider Diagrams of Order

    Get PDF
    We develop a reasoning system for an Euler diagram based visual logic, called spider diagrams of order. We de- fine a normal form for spider diagrams of order and provide an algorithm, based on the reasoning system, for producing diagrams in our normal form. Normal forms for visual log- ics have been shown to assist in proving completeness of associated reasoning systems. We wish to use the reasoning system to allow future direct comparison of spider diagrams of order and linear temporal logic

    Evaluation of the usability of constraint diagrams as a visual modelling language: theoretical and empirical investigations

    Get PDF
    This research evaluates the constraint diagrams (CD) notation, which is a formal representation for program specification that has some promise to be used by people who are not expert in software design. Multiple methods were adopted in order to provide triangulated evidence of the potential benefits of constraint diagrams compared with other notational systems. Three main approaches were adopted for this research. The first approach was a semantic and task analysis of the CD notation. This was conducted by the application of the Cognitive Dimensions framework, which was used to examine the relative strengths and weaknesses of constraint diagrams and conventional notations in terms of the perceptive facilitation or impediments of these different representations. From this systematic analysis, we found that CD cognitively reduced the cost of exploratory design, modification, incrementation, searching, and transcription activities with regard to the cognitive dimensions: consistency, visibility, abstraction, closeness of mapping, secondary notation, premature commitment, role-expressiveness, progressive evaluation, diffuseness, provisionality, hidden dependency, viscosity, hard mental operations, and error-proneness. The second approach was an empirical evaluation of the comprehension of CD compared to natural language (NL) with computer science students. This experiment took the form of a web-based competition in which 33 participants were given instructions and training on either CD or the equivalent NL specification expressions, and then after each example, they responded to three multiple-choice questions requiring the interpretation of expressions in their particular notation. Although the CD group spent more time on the training and had less confidence, they obtained comparable interpretation scores to the NL group and took less time to answer the questions, although they had no prior experience of CD notation. The third approach was an experiment on the construction of CD. 20 participants were given instructions and training on either CD or the equivalent NL specification expressions, and then after each example, they responded to three questions requiring the construction of expressions in their particular notation. We built an editor to allow the construction of the two notations, which automatically logged their interactions. In general, for constructing program specification, the CD group had more accurate answers, they had spent less time in training, and their returns to the training examples were fewer than those of the NL group. Overall it was found that CD is understandable, usable, intuitive, and expressive with unambiguous semantic notation

    Reasoning with constraint diagrams: summary of PhD thesis

    Get PDF

    The usability of constraint diagrams

    Get PDF

    Enhancing the expressiveness of spider diagram systems

    Get PDF

    A cognitive exploration of the “non-visual” nature of geometric proofs

    Get PDF
    Why are Geometric Proofs (Usually) “Non-Visual”? We asked this question as a way to explore the similarities and differences between diagrams and text (visual thinking versus language thinking). Traditional text-based proofs are considered (by many to be) more rigorous than diagrams alone. In this paper we focus on human perceptual-cognitive characteristics that may encourage textual modes for proofs because of the ergonomic affordances of text relative to diagrams. We suggest that visual-spatial perception of physical objects, where an object is perceived with greater acuity through foveal vision rather than peripheral vision, is similar to attention navigating a conceptual visual-spatial structure. We suggest that attention has foveal-like and peripheral-like characteristics and that textual modes appeal to what we refer to here as foveal-focal attention, an extension of prior work in focused attention
    corecore