1,150 research outputs found

    The Expressiveness of Locally Stratified Programs

    Get PDF
    This paper completes an investigation of the logical expressibility of finite, locally stratified, general logic programs. We show that every hyperarithmetic set can be computed by a suitably chosen locally stratified logic program (as a set of values of a predicate over its perfect model). This is an optimal result, since the perfect model of a locally stratified program is itself an implicitly definable hyperarithmetic set (under a recursive coding of the Herbrand base); hence to obtain all hyperarithmetic sets requires something new, in this case selecting one predicate from the model. We find that the expressive power of programs does not increase when one considers the programs which have a unique stable model or a total well-founded model. This shows that all these classes of structures (perfect models of locally stratified logic programs, well-founded models which turn out to be total, and stable models of programs possessing a unique stable model) are all closely connected with Kleene\u27s hyperarithmetical hierarchy. Thus, for general logic programming, negation with respect to two-valued logic is related to the hyperarithmetic hierarchy in the same way as Horn logic is to the class of recursively enumerable sets

    Four Lessons in Versatility or How Query Languages Adapt to the Web

    Get PDF
    Exposing not only human-centered information, but machine-processable data on the Web is one of the commonalities of recent Web trends. It has enabled a new kind of applications and businesses where the data is used in ways not foreseen by the data providers. Yet this exposition has fractured the Web into islands of data, each in different Web formats: Some providers choose XML, others RDF, again others JSON or OWL, for their data, even in similar domains. This fracturing stifles innovation as application builders have to cope not only with one Web stack (e.g., XML technology) but with several ones, each of considerable complexity. With Xcerpt we have developed a rule- and pattern based query language that aims to give shield application builders from much of this complexity: In a single query language XML and RDF data can be accessed, processed, combined, and re-published. Though the need for combined access to XML and RDF data has been recognized in previous work (including the W3C’s GRDDL), our approach differs in four main aspects: (1) We provide a single language (rather than two separate or embedded languages), thus minimizing the conceptual overhead of dealing with disparate data formats. (2) Both the declarative (logic-based) and the operational semantics are unified in that they apply for querying XML and RDF in the same way. (3) We show that the resulting query language can be implemented reusing traditional database technology, if desirable. Nevertheless, we also give a unified evaluation approach based on interval labelings of graphs that is at least as fast as existing approaches for tree-shaped XML data, yet provides linear time and space querying also for many RDF graphs. We believe that Web query languages are the right tool for declarative data access in Web applications and that Xcerpt is a significant step towards a more convenient, yet highly efficient data access in a “Web of Data”

    Computing Preferred Answer Sets by Meta-Interpretation in Answer Set Programming

    Full text link
    Most recently, Answer Set Programming (ASP) is attracting interest as a new paradigm for problem solving. An important aspect which needs to be supported is the handling of preferences between rules, for which several approaches have been presented. In this paper, we consider the problem of implementing preference handling approaches by means of meta-interpreters in Answer Set Programming. In particular, we consider the preferred answer set approaches by Brewka and Eiter, by Delgrande, Schaub and Tompits, and by Wang, Zhou and Lin. We present suitable meta-interpreters for these semantics using DLV, which is an efficient engine for ASP. Moreover, we also present a meta-interpreter for the weakly preferred answer set approach by Brewka and Eiter, which uses the weak constraint feature of DLV as a tool for expressing and solving an underlying optimization problem. We also consider advanced meta-interpreters, which make use of graph-based characterizations and often allow for more efficient computations. Our approach shows the suitability of ASP in general and of DLV in particular for fast prototyping. This can be fruitfully exploited for experimenting with new languages and knowledge-representation formalisms.Comment: 34 pages, appeared as a Technical Report at KBS of the Vienna University of Technology, see http://www.kr.tuwien.ac.at/research/reports

    The DLV System for Knowledge Representation and Reasoning

    Full text link
    This paper presents the DLV system, which is widely considered the state-of-the-art implementation of disjunctive logic programming, and addresses several aspects. As for problem solving, we provide a formal definition of its kernel language, function-free disjunctive logic programs (also known as disjunctive datalog), extended by weak constraints, which are a powerful tool to express optimization problems. We then illustrate the usage of DLV as a tool for knowledge representation and reasoning, describing a new declarative programming methodology which allows one to encode complex problems (up to Δ3P\Delta^P_3-complete problems) in a declarative fashion. On the foundational side, we provide a detailed analysis of the computational complexity of the language of DLV, and by deriving new complexity results we chart a complete picture of the complexity of this language and important fragments thereof. Furthermore, we illustrate the general architecture of the DLV system which has been influenced by these results. As for applications, we overview application front-ends which have been developed on top of DLV to solve specific knowledge representation tasks, and we briefly describe the main international projects investigating the potential of the system for industrial exploitation. Finally, we report about thorough experimentation and benchmarking, which has been carried out to assess the efficiency of the system. The experimental results confirm the solidity of DLV and highlight its potential for emerging application areas like knowledge management and information integration.Comment: 56 pages, 9 figures, 6 table

    Nonmonotonic Trust Management for P2P Applications

    Get PDF
    Community decisions about access control in virtual communities are non-monotonic in nature. This means that they cannot be expressed in current, monotonic trust management languages such as the family of Role Based Trust Management languages (RT). To solve this problem we propose RT-, which adds a restricted form of negation to the standard RT language, thus admitting a controlled form of non-monotonicity. The semantics of RT- is discussed and presented in terms of the well-founded semantics for Logic Programs. Finally we discuss how chain discovery can be accomplished for RT-.Comment: This paper appears in the proceedings of the 1st International Workshop on Security and Trust Management (STM 2005). To appear in ENTC

    Network-wide Configuration Synthesis

    Full text link
    Computer networks are hard to manage. Given a set of high-level requirements (e.g., reachability, security), operators have to manually figure out the individual configuration of potentially hundreds of devices running complex distributed protocols so that they, collectively, compute a compatible forwarding state. Not surprisingly, operators often make mistakes which lead to downtimes. To address this problem, we present a novel synthesis approach that automatically computes correct network configurations that comply with the operator's requirements. We capture the behavior of existing routers along with the distributed protocols they run in stratified Datalog. Our key insight is to reduce the problem of finding correct input configurations to the task of synthesizing inputs for a stratified Datalog program. To solve this synthesis task, we introduce a new algorithm that synthesizes inputs for stratified Datalog programs. This algorithm is applicable beyond the domain of networks. We leverage our synthesis algorithm to construct the first network-wide configuration synthesis system, called SyNET, that support multiple interacting routing protocols (OSPF and BGP) and static routes. We show that our system is practical and can infer correct input configurations, in a reasonable amount time, for networks of realistic size (> 50 routers) that forward packets for multiple traffic classes.Comment: 24 Pages, short version published in CAV 201
    corecore