205,991 research outputs found

    A hypothetico-deductive approach to assessing the social function of chemical signalling in a non-territorial solitary carnivore

    Get PDF
    The function of chemical signalling in non-territorial solitary carnivores is still relatively unclear. Studies on territorial solitary and social carnivores have highlighted odour capability and utility, however the social function of chemical signalling in wild carnivore populations operating dominance hierarchy social systems has received little attention. We monitored scent marking and investigatory behaviour of wild brown bears Ursus arctos, to test multiple hypotheses relating to the social function of chemical signalling. Camera traps were stationed facing bear ‘marking trees’ to document behaviour by different age sex classes in different seasons. We found evidence to support the hypothesis that adult males utilise chemical signalling to communicate dominance to other males throughout the non-denning period. Adult females did not appear to utilise marking trees to advertise oestrous state during the breeding season. The function of marking by subadult bears is somewhat unclear, but may be related to the behaviour of adult males. Subadults investigated trees more often than they scent marked during the breeding season, which could be a result of an increased risk from adult males. Females with young showed an increase in marking and investigation of trees outside of the breeding season. We propose the hypothesis that females engage their dependent young with marking trees from a young age, at a relatively ‘safe’ time of year. Memory, experience, and learning at a young age, may all contribute towards odour capabilities in adult bears

    Rooted Spiral Trees on Hyper-cubical lattices

    Full text link
    We study rooted spiral trees in 2,3 and 4 dimensions on a hyper cubical lattice using exact enumeration and Monte-Carlo techniques. On the square lattice, we also obtain exact lower bound of 1.93565 on the growth constant λ\lambda. Series expansions give θ=−1.3667±0.001\theta=-1.3667\pm 0.001 and ν=1.3148±0.001\nu = 1.3148\pm0.001 on a square lattice. With Monte-Carlo simulations we get the estimates as θ=−1.364±0.01\theta=-1.364\pm0.01, and ν=1.312±0.01\nu = 1.312\pm0.01. These results are numerical evidence against earlier proposed dimensional reduction by four in this problem. In dimensions higher than two, the spiral constraint can be implemented in two ways. In either case, our series expansion results do not support the proposed dimensional reduction.Comment: replaced with published versio

    Statistical mechanics of ontology based annotations

    Full text link
    We present a statistical mechanical theory of the process of annotating an object with terms selected from an ontology. The term selection process is formulated as an ideal lattice gas model, but in a highly structured inhomogeneous field. The model enables us to explain patterns recently observed in real-world annotation data sets, in terms of the underlying graph structure of the ontology. By relating the external field strengths to the information content of each node in the ontology graph, the statistical mechanical model also allows us to propose a number of practical metrics for assessing the quality of both the ontology, and the annotations that arise from its use. Using the statistical mechanical formalism we also study an ensemble of ontologies of differing size and complexity; an analysis not readily performed using real data alone. Focusing on regular tree ontology graphs we uncover a rich set of scaling laws describing the growth in the optimal ontology size as the number of objects being annotated increases. In doing so we provide a further possible measure for assessment of ontologies.Comment: 27 pages, 5 figure

    Branched polymers, complex spins and the freezing transition

    Get PDF
    We show that by coupling complex three-state systems to branched-polymer like ensembles we can obtain models with gamma-string different from one half. It is also possible to study the interpolation between dynamical and crystalline graphs for these models; we find that only when geometry fluctuations are completely forbidden is there a crystalline phase.Comment: 14 pages plain LateX2e, 4 eps figures included using eps

    Stochastic Shortest Path with Energy Constraints in POMDPs

    Full text link
    We consider partially observable Markov decision processes (POMDPs) with a set of target states and positive integer costs associated with every transition. The traditional optimization objective (stochastic shortest path) asks to minimize the expected total cost until the target set is reached. We extend the traditional framework of POMDPs to model energy consumption, which represents a hard constraint. The energy levels may increase and decrease with transitions, and the hard constraint requires that the energy level must remain positive in all steps till the target is reached. First, we present a novel algorithm for solving POMDPs with energy levels, developing on existing POMDP solvers and using RTDP as its main method. Our second contribution is related to policy representation. For larger POMDP instances the policies computed by existing solvers are too large to be understandable. We present an automated procedure based on machine learning techniques that automatically extracts important decisions of the policy allowing us to compute succinct human readable policies. Finally, we show experimentally that our algorithm performs well and computes succinct policies on a number of POMDP instances from the literature that were naturally enhanced with energy levels.Comment: Technical report accompanying a paper published in proceedings of AAMAS 201

    A new, efficient algorithm for the Forest Fire Model

    Full text link
    The Drossel-Schwabl Forest Fire Model is one of the best studied models of non-conservative self-organised criticality. However, using a new algorithm, which allows us to study the model on large statistical and spatial scales, it has been shown to lack simple scaling. We thereby show that the considered model is not critical. This paper presents the algorithm and its parallel implementation in detail, together with large scale numerical results for several observables. The algorithm can easily be adapted to related problems such as percolation.Comment: 38 pages, 28 figures, REVTeX 4, RMP style; V2 is for clarifications as well as corrections and update of reference
    • …
    corecore