10,996 research outputs found

    Timing and correction of stepping movements with a virtual reality avatar

    Get PDF
    Research into the ability to coordinate one’s movements with external cues has focussed on the use of simple rhythmic, auditory and visual stimuli, or interpersonal coordination with another person. Coordinating movements with a virtual avatar has not been explored, in the context of responses to temporal cues. To determine whether cueing of movements using a virtual avatar is effective, people’s ability to accurately coordinate with the stimuli needs to be investigated. Here we focus on temporal cues, as we know from timing studies that visual cues can be difficult to follow in the timing context. Real stepping movements were mapped onto an avatar using motion capture data. Healthy participants were then motion captured whilst stepping in time with the avatar’s movements, as viewed through a virtual reality headset. The timing of one of the avatar step cycles was accelerated or decelerated by 15% to create a temporal perturbation, for which participants would need to correct to, in order to remain in time. Step onset times of participants relative to the corresponding step-onsets of the avatar were used to measure the timing errors (asynchronies) between them. Participants completed either a visual-only condition, or auditory-visual with footstep sounds included, at two stepping tempo conditions (Fast: 400ms interval, Slow: 800ms interval). Participants’ asynchronies exhibited slow drift in the Visual-Only condition, but became stable in the Auditory-Visual condition. Moreover, we observed a clear corrective response to the phase perturbation in both the fast and slow tempo auditory-visual conditions. We conclude that an avatar’s movements can be used to influence a person’s own motion, but should include relevant auditory cues congruent with the movement to ensure a suitable level of entrainment is achieved. This approach has applications in physiotherapy, where virtual avatars present an opportunity to provide the guidance to assist patients in adhering to prescribed exercises

    Regularity and asynchrony when tapping to tactile, auditory and combined pulses

    Get PDF
    This research is carried out with the aim to develop assistive technology that helps users following the beat in music, which is of interest to cohchlear implant users. The envisioned technology would use tactile feedback on each musical beat. However, this raises fundamental questions about uni- and cross-modal perception which are not addressed in similar context in the literature. The aim of this study was i) to find out how well users are able to follow tactile pulses. ii) To gain insights in the differences between auditory, tactile and combined auditory-tactile feedback. A tapping experiment was organized with 27 subjects. They were requested to tap along with an auditory pulse, a tactile pulse and a combined auditory-tactile pulse in three different tempi. An evaluation with respect to regularity and asynchrony followed. Subjects were found to perform significantly better in terms of reqularity and asynchrony for the auditory and auditory/tactile condition with respect to the tactile only condition. Mean negative asynchrony (MNA) for auditory and combined (auditory and tactile) conditions were in the range of previous studies. The MNA’s for the tactile conditions showed a remarkable dependence on tempo. In the 90BPM condition a clear anticipation (-20ms) was reported, for the 120BPM condition the mean was around zero, the 150BPM condition showed a positive MNA (a reaction vs anticipation). An effect that could be encorporated into the design of an assistive technology

    Hatching asynchrony, survival, and the fitness of alternative adult morphs in \u3ci\u3eAmbystoma talpoideum\u3c/i\u3e

    Get PDF
    The mole salamander, Ambystoma talpoideum, exhibits both aquatic (gilled) and terrestrial (metamorphosed) adult morphologies. Previous studies have shown the existence of body-size advantages associated with the terrestrial morph in A. talpoideum and other polymorphic salamanders (e.g., A. tigrinum). However, aquatic adult A. talpoideum mature at a younger age and often breed earlier than terrestrial adults. We tested the hypothesis that early maturation and reproduction in aquatic adults increase fitness (irrespective of body size). We reared larval A. talpoideum in mesocosms and varied the timing of hatching, with early-hatching larvae representing the offspring from early-breeding aquatic adults, and late-hatching larvae representing the offspring of later-breeding terrestrial adults. Our results demonstrate significantly higher survival rates among early-hatchlings relative to late-hatching conspecifics, supporting the hypothesis that early reproduction may be an important mechanism mediating the polymorphism in A. talpoideum. We discuss our results within the context of size-based models of the fitness of alternative life-cycles

    Compensating asynchrony effects in the calculation of financial correlations

    Full text link
    We present a method to compensate statistical errors in the calculation of correlations on asynchronous time series. The method is based on the assumption of an underlying time series. We set up a model and apply it to financial data to examine the decrease of calculated correlations towards smaller return intervals (Epps effect). We show that this statistical effect is a major cause of the Epps effect. Hence, we are able to quantify and to compensate it using only trading prices and trading times.Comment: 13 pages, 7 figure

    Accumulated Gradient Normalization

    Get PDF
    This work addresses the instability in asynchronous data parallel optimization. It does so by introducing a novel distributed optimizer which is able to efficiently optimize a centralized model under communication constraints. The optimizer achieves this by pushing a normalized sequence of first-order gradients to a parameter server. This implies that the magnitude of a worker delta is smaller compared to an accumulated gradient, and provides a better direction towards a minimum compared to first-order gradients, which in turn also forces possible implicit momentum fluctuations to be more aligned since we make the assumption that all workers contribute towards a single minima. As a result, our approach mitigates the parameter staleness problem more effectively since staleness in asynchrony induces (implicit) momentum, and achieves a better convergence rate compared to other optimizers such as asynchronous EASGD and DynSGD, which we show empirically.Comment: 16 pages, 12 figures, ACML201

    A Max-Plus Model of Asynchronous Cellular Automata

    Full text link
    This paper presents a new framework for asynchrony. This has its origins in our attempts to better harness the internal decision making process of cellular automata (CA). Thus, we show that a max-plus algebraic model of asynchrony arises naturally from the CA requirement that a cell receives the state of each neighbour before updating. The significant result is the existence of a bijective mapping between the asynchronous system and the synchronous system classically used to update cellular automata. Consequently, although the CA outputs look qualitatively different, when surveyed on "contours" of real time, the asynchronous CA replicates the synchronous CA. Moreover, this type of asynchrony is simple - it is characterised by the underlying network structure of the cells, and long-term behaviour is deterministic and periodic due to the linearity of max-plus algebra. The findings lead us to proffer max-plus algebra as: (i) a more accurate and efficient underlying timing mechanism for models of patterns seen in nature, and (ii) a foundation for promising extensions and applications.Comment: in Complex Systems (Complex Systems Publications Inc), Volume 23, Issue 4, 201
    • …
    corecore