8,880 research outputs found

    Organic Selection and Social Heredity: The Original Baldwin Effect Revisited

    Get PDF
    The so-called “Baldwin Effect” has been studied for years in the fields of Artificial Life, Cognitive Science, and Evolutionary Theory across disciplines. This idea is often conflated with genetic assimilation, and has raised controversy in trans-disciplinary scientific discourse due to the many interpretations it has. This paper revisits the “Baldwin Effect” in Baldwin’s original spirit from a joint historical, theoretical and experimental approach. Social Heredity – the inheritance of cultural knowledge via non-genetic means in Baldwin’s term – is also taken into consideration. I shall argue that the Baldwin Effect can occur via social heredity without necessity for genetic assimilation. Computational experiments are carried out to show that when social heredity is permitted with high fidelity, there is no need for the assimilation of acquired characteristics; instead the Baldwin Effect occurs as promoting more plasticity to facilitate future intelligence. The role of mind and intelligence in evolution and its implications in an extended synthesis of evolution are briefly discussed

    Fitness costs associated with evolved herbicide resistance alleles in plants

    Get PDF
    Predictions based on evolutionary theory suggest that the adaptive value of evolved herbicide resistance alleles may be compromised by the existence of fitness costs. There have been many studies quantifying the fitness costs associated with novel herbicide resistance alleles, reflecting the importance of fitness costs in determining the evolutionary dynamics of resistance. However, many of these studies have incorrectly defined resistance or used inappropriate plant material and methods to measure fitness. This review has two major objectives. First, to propose a methodological framework that establishes experimental criteria to unequivocally evaluate fitness costs. Second, to present a comprehensive analysis of the literature on fitness costs associated with herbicide resistance alleles. This analysis reveals unquestionable evidence that some herbicide resistance alleles are associated with pleiotropic effects that result in plant fitness costs. Observed costs are evident from herbicide resistance-endowing amino acid substitutions in proteins involved in amino acid, fatty acid, auxin and cellulose biosynthesis, as well as enzymes involved in herbicide metabolism. However, these resistance fitness costs are not universal and their expression depends on particular plant alleles and mutations. The findings of this review are discussed within the context of the plant defence trade-off theory and herbicide resistance evolution

    Synthesizing the role of epigenetics in the response and adaptation of species to climate change in freshwater ecosystems

    Get PDF
    Freshwater ecosystems are amongst the most threatened ecosystems on Earth. Currently, climate change is one of the most important drivers of freshwater transformation and its effects include changes in the composition, biodiversity and functioning of freshwater ecosystems. Understanding the capacity of freshwater species to tolerate the environmental fluctuations induced by climate change is critical to the development of effective conservation strategies. In the last few years, epigenetic mechanisms were increasingly put forward in this context because of their pivotal role in gene-environment interactions. In addition, the evolutionary role of epigenetically inherited phenotypes is a relatively recent but promising field. Here, we examine and synthesize the impacts of climate change on freshwater ecosystems, exploring the potential role of epigenetic mechanisms in both short- and long-term adaptation of species. Following this wrapping-up of current evidence, we particularly focused on bringing together the most promising future research avenues towards a better understanding of the effects of climate change on freshwater biodiversity, specifically highlighting potential molecular targets and the most suitable freshwater species for future epigenetic studies in this context

    The evolution of sex through the Baldwin effect

    Get PDF
    This paper suggests that the fundamental haploid-diploid cycle of eukaryotic sex exploits a rudimentary form of the Baldwin effect. With this explanation for the basic cycle, the other associated phenomena can be explained as evolution tuning the amount and frequency of learning experienced by an organism. Using the well-known NK model of fitness landscapes it is shown that varying landscape ruggedness varies the benefit of the haploid-diploid cycle, whether based upon endomitosis or syngamy. The utility of mechanisms such as pre-meiotic doubling and recombination during the cycle are also shown to vary with landscape ruggedness. This view is suggested as underpinning, rather than contradicting, many existing explanations for sex

    Gene up-regulation by DNA demethylation in 35S-gshI-transgenic poplars (Populus x canescens)

    Get PDF
    Gene expression levels of transgene 35S-gshI (Îł-glutamylcysteine synthetase) cloned from E. coli, and the endogenous gene gsh1 of poplar (Populus x canescens) were upregulated by the DNA demethylating agent DHAC (5,6-dihydro-5'-azacytidine hydrochloride) (10-4 M for 7 days) in aseptic leaf discs cultures. Two 35S-gshI-transgenic (6lgl and 11ggs) and wild type (WT) poplar clones were used. The efficiency of gene upregulation was also analyzed under herbicide paraquat stress (4 x 10-7 M). Levels of gshI-mRNA and gsh1-mRNA were determined by RT-qPCR (reverse transcriptase quantitative PCR) after cDNA synthesis. For internal control, the constitutively expressed housekeeping poplar genes α-tubulin and actin were used, and the 2−HHCt method was applied for data analysis. In long term DHAC treatment (21 days), a morphogenetic response of de novo root development was observed on leaf discs in a wide concentration range of DHAC (10-8 to 10-6 M). Adventitious shoots (11ggs clone) also emerged from leaf discs after a combined treatment with DHAC (10-4 M) and paraquat (10-7 M). Shoots were dissected, rooted and transplanted in glass houses for further analyses for phytoremediation capacity. Since DNA methylation patterns are inherited (epigenetic memory), these poplar plants with increased gene expression levels of both transgene 35S-gshI and endogenous gene gsh1 provide novel plant sources for in situ application

    Multi-locus analysis of genomic time series data from experimental evolution.

    Get PDF
    Genomic time series data generated by evolve-and-resequence (E&R) experiments offer a powerful window into the mechanisms that drive evolution. However, standard population genetic inference procedures do not account for sampling serially over time, and new methods are needed to make full use of modern experimental evolution data. To address this problem, we develop a Gaussian process approximation to the multi-locus Wright-Fisher process with selection over a time course of tens of generations. The mean and covariance structure of the Gaussian process are obtained by computing the corresponding moments in discrete-time Wright-Fisher models conditioned on the presence of a linked selected site. This enables our method to account for the effects of linkage and selection, both along the genome and across sampled time points, in an approximate but principled manner. We first use simulated data to demonstrate the power of our method to correctly detect, locate and estimate the fitness of a selected allele from among several linked sites. We study how this power changes for different values of selection strength, initial haplotypic diversity, population size, sampling frequency, experimental duration, number of replicates, and sequencing coverage depth. In addition to providing quantitative estimates of selection parameters from experimental evolution data, our model can be used by practitioners to design E&R experiments with requisite power. We also explore how our likelihood-based approach can be used to infer other model parameters, including effective population size and recombination rate. Then, we apply our method to analyze genome-wide data from a real E&R experiment designed to study the adaptation of D. melanogaster to a new laboratory environment with alternating cold and hot temperatures

    Does Meaning Evolove?

    Get PDF
    A common method of improving how well understood a theory is, is by comparing it to another theory which has been better developed. Radical interpretation is a theory which attempts to explain how communication has meaning. Radical interpretation is treated as another time dependent theory and compared to the time dependent theory of biological evolution. Several similarities and differences are uncovered. Biological evolution can be gradual or punctuated. Whether radical interpretation is gradual or punctuated depends on how the question is framed: on the coarse-grained time scale it proceeds gradually, but on the fine-grained time scale it proceeds by punctuated equilibria. Biological evolution proceeds by natural selection, the counterpart to this is the increase in both correspondence and coherence. Exaption, mutations, and spandrels have counterparts metaphor, speech errors, and puns respectively. Homologous and analogs have direct counterparts in specific words. The most important differences originate from the existence of a unit of inheritance (the traditional gene) occurring in biological evolution - there is no such unit in language
    • 

    corecore