860 research outputs found

    The Evolution of Embedding Metadata in Blockchain Transactions

    Get PDF
    The use of blockchains is growing every day, and their utility has greatly expanded from sending and receiving crypto-coins to smart-contracts and decentralized autonomous organizations. Modern blockchains underpin a variety of applications: from designing a global identity to improving satellite connectivity. In our research we look at the ability of blockchains to store metadata in an increasing volume of transactions and with evolving focus of utilization. We further show that basic approaches to improving blockchain privacy also rely on embedding metadata. This paper identifies and classifies real-life blockchain transactions embedding metadata of a number of major protocols running essentially over the bitcoin blockchain. The empirical analysis here presents the evolution of metadata utilization in the recent years, and the discussion suggests steps towards preventing criminal use. Metadata are relevant to any blockchain, and our analysis considers primarily bitcoin as a case study. The paper concludes that simultaneously with both expanding legitimate utilization of embedded metadata and expanding blockchain functionality, the applied research on improving anonymity and security must also attempt to protect against blockchain abuse.Comment: 9 pages, 6 figures, 1 table, 2018 International Joint Conference on Neural Network

    The Evolution of Embedding Metadata in Blockchain Transactions

    Get PDF
    The use of blockchains is growing every day, and their utility has greatly expanded from sending and receiving crypto-coins to smart-contracts and decentralized autonomous organizations. Modern blockchains underpin a variety of applications: from designing a global identity to improving satellite connectivity. In our research we look at the ability of blockchains to store metadata in an increasing volume of transactions and with evolving focus of utilization. We further show that basic approaches to improving blockchain privacy also rely on embedding metadata. This paper identifies and classifies real-life blockchain transactions embedding metadata of a number of major protocols running essentially over the bitcoin blockchain. The empirical analysis here presents the evolution of metadata utilization in the recent years, and the discussion suggests steps towards preventing criminal use. Metadata are relevant to any blockchain, and our analysis considers primarily bitcoin as a case study. The paper concludes that simultaneously with both expanding legitimate utilization of embedded metadata and expanding blockchain functionality, the applied research on improving anonymity and security must also attempt to protect against blockchain abuse

    Decentralized trust in the inter-domain routing infrastructure

    Get PDF
    Inter-domain routing security is of critical importance to the Internet since it prevents unwanted traffic redirections. The current system is based on a Public Key Infrastructure (PKI), a centralized repository of digital certificates. However, the inherent centralization of such design creates tensions between its participants and hinders its deployment. In addition, some technical drawbacks of PKIs delay widespread adoption. In this paper we present IPchain, a blockchain to store the allocations and delegations of IP addresses. IPchain leverages blockchains' properties to decentralize trust among its participants, with the final goal of providing flexible trust models that adapt better to the ever-changing geopolitical landscape. Moreover, we argue that Proof of Stake is a suitable consensus algorithm for IPchain due to the unique incentive structure of this use-case, and that blockchains offer relevant technical advantages when compared to existing systems, such as simplified management. In order to show its feasibility and suitability, we have implemented and evaluated IPchain's performance and scalability storing around 350k IP prefixes in a 2.5 GB chain.Peer ReviewedPostprint (published version

    Internet of robotic things : converging sensing/actuating, hypoconnectivity, artificial intelligence and IoT Platforms

    Get PDF
    The Internet of Things (IoT) concept is evolving rapidly and influencing newdevelopments in various application domains, such as the Internet of MobileThings (IoMT), Autonomous Internet of Things (A-IoT), Autonomous Systemof Things (ASoT), Internet of Autonomous Things (IoAT), Internetof Things Clouds (IoT-C) and the Internet of Robotic Things (IoRT) etc.that are progressing/advancing by using IoT technology. The IoT influencerepresents new development and deployment challenges in different areassuch as seamless platform integration, context based cognitive network integration,new mobile sensor/actuator network paradigms, things identification(addressing, naming in IoT) and dynamic things discoverability and manyothers. The IoRT represents new convergence challenges and their need to be addressed, in one side the programmability and the communication ofmultiple heterogeneous mobile/autonomous/robotic things for cooperating,their coordination, configuration, exchange of information, security, safetyand protection. Developments in IoT heterogeneous parallel processing/communication and dynamic systems based on parallelism and concurrencyrequire new ideas for integrating the intelligent “devices”, collaborativerobots (COBOTS), into IoT applications. Dynamic maintainability, selfhealing,self-repair of resources, changing resource state, (re-) configurationand context based IoT systems for service implementation and integrationwith IoT network service composition are of paramount importance whennew “cognitive devices” are becoming active participants in IoT applications.This chapter aims to be an overview of the IoRT concept, technologies,architectures and applications and to provide a comprehensive coverage offuture challenges, developments and applications

    Analysis of a consensus protocol for extending consistent subchains on the bitcoin blockchain

    Get PDF
    Currently, an increasing number of third-party applications exploit the Bitcoin blockchain to store tamper-proof records of their executions, immutably. For this purpose, they leverage the few extra bytes available for encoding custom metadata in Bitcoin transactions. A sequence of records of the same application can thus be abstracted as a stand-alone subchain inside the Bitcoin blockchain. However, several existing approaches do not make any assumptions about the consistency of their subchains, either (i) neglecting the possibility that this sequence of messages can be altered, mainly due to unhandled concurrency, network malfunctions, application bugs, or malicious users, or (ii) giving weak guarantees about their security. To tackle this issue, in this paper, we propose an improved version of a consensus protocol formalized in our previous work, built on top of the Bitcoin protocol, to incentivize third-party nodes to consistently extend their subchains. Besides, we perform an extensive analysis of this protocol, both defining its properties and presenting some real-world attack scenarios, to show how its specific design choices and parameter configurations can be crucial to prevent malicious practices

    TAPESTRY:A Blockchain based Service for Trusted Interaction Online

    Get PDF
    We present a novel blockchain based service for proving the provenance of online digital identity, exposed as an assistive tool to help non-expert users make better decisions about whom to trust online. Our service harnesses the digital personhood (DP); the longitudinal and multi-modal signals created through users' lifelong digital interactions, as a basis for evidencing the provenance of identity. We describe how users may exchange trust evidence derived from their DP, in a granular and privacy-preserving manner, with other users in order to demonstrate coherence and longevity in their behaviour online. This is enabled through a novel secure infrastructure combining hybrid on- and off-chain storage combined with deep learning for DP analytics and visualization. We show how our tools enable users to make more effective decisions on whether to trust unknown third parties online, and also to spot behavioural deviations in their own social media footprints indicative of account hijacking.Comment: Submitted to IEEE TSC Special Issue on Blockchain Services, May 201

    Zephyrus: An information hiding mechanism leveraging Ethereum data fields

    Get PDF
    Permanent availability makes blockchain technologies a suitable alternative for building a covert channel. Previous works have analysed its feasibility in a particular blockchain technology called Bitcoin. However, Ethereum cryptocurrency is gaining momentum as a means to build distributed apps. The novelty of this paper relies on the use of Ethereum to establish a covert channel considering all transaction fields and smart contracts. No previous work has explored this issue. Thus, a mechanism called Zephyrus, an information hiding mechanism based on steganography, is developed. Moreover, its capacity, cost and stealthiness are assessed both theoretically, and empirically through a prototype implementation that is publicly released. Disregarding the time taken to send the transaction to the blockchain, its retrieval and the mining time, experimental results show that, in the best case, 40 Kbits can be embedded in 0.57 s. for US$ 1.64, and retrieved in 2.8

    Trust in Software Supply Chains: Blockchain-Enabled SBOM and the AIBOM Future

    Full text link
    Software Bill of Materials (SBOM) serves as a critical pillar in ensuring software supply chain security by providing a detailed inventory of the components and dependencies integral to software development. However, challenges abound in the sharing of SBOMs, including potential data tampering, hesitation among software vendors to disclose comprehensive information, and bespoke requirements from software procurers or users. These obstacles have stifled widespread adoption and utilization of SBOMs, underscoring the need for a more secure and flexible mechanism for SBOM sharing. This study proposes a novel solution to these challenges by introducing a blockchain-empowered approach for SBOM sharing, leveraging verifiable credentials to allow for selective disclosure. This strategy not only heightens security but also offers flexibility. Furthermore, this paper broadens the remit of SBOM to encompass AI systems, thereby coining the term AI Bill of Materials (AIBOM). This extension is motivated by the rapid progression in AI technology and the escalating necessity to track the lineage and composition of AI software and systems. Particularly in the era of foundational models like large language models (LLMs), understanding their composition and dependencies becomes crucial. These models often serve as a base for further development, creating complex dependencies and paving the way for innovative AI applications. The evaluation of our solution indicates the feasibility and flexibility of the proposed SBOM sharing mechanism, positing a new solution for securing (AI) software supply chains
    • 

    corecore