200 research outputs found

    Web ontology representation and reasoning via fragments of set theory

    Full text link
    In this paper we use results from Computable Set Theory as a means to represent and reason about description logics and rule languages for the semantic web. Specifically, we introduce the description logic \mathcal{DL}\langle 4LQS^R\rangle(\D)--admitting features such as min/max cardinality constructs on the left-hand/right-hand side of inclusion axioms, role chain axioms, and datatypes--which turns out to be quite expressive if compared with \mathcal{SROIQ}(\D), the description logic underpinning the Web Ontology Language OWL. Then we show that the consistency problem for \mathcal{DL}\langle 4LQS^R\rangle(\D)-knowledge bases is decidable by reducing it, through a suitable translation process, to the satisfiability problem of the stratified fragment 4LQSR4LQS^R of set theory, involving variables of four sorts and a restricted form of quantification. We prove also that, under suitable not very restrictive constraints, the consistency problem for \mathcal{DL}\langle 4LQS^R\rangle(\D)-knowledge bases is \textbf{NP}-complete. Finally, we provide a 4LQSR4LQS^R-translation of rules belonging to the Semantic Web Rule Language (SWRL)

    Towards Understanding Reasoning Complexity in Practice

    Get PDF
    Although the computational complexity of the logic underlying the standard OWL 2 for the Web Ontology Language (OWL) appears discouraging for real applications, several contributions have shown that reasoning with OWL ontologies is feasible in practice. It turns out that reasoning in practice is often far less complex than is suggested by the established theoretical complexity bound, which reflects the worstcase scenario. State-of-the reasoners like FACT++, HERMIT, PELLET and RACER have demonstrated that, even with fairly expressive fragments of OWL 2, acceptable performances can be achieved. However, it is still not well understood why reasoning is feasible in practice and it is rather unclear how to study this problem. In this paper, we suggest first steps that in our opinion could lead to a better understanding of practical complexity. We also provide and discuss some initial empirical results with HERMIT on prominent ontologie

    Syntactic vs. Semantic Locality: How Good Is a Cheap Approximation?

    Full text link
    Extracting a subset of a given OWL ontology that captures all the ontology's knowledge about a specified set of terms is a well-understood task. This task can be based, for instance, on locality-based modules (LBMs). These come in two flavours, syntactic and semantic, and a syntactic LBM is known to contain the corresponding semantic LBM. For syntactic LBMs, polynomial extraction algorithms are known, implemented in the OWL API, and being used. In contrast, extracting semantic LBMs involves reasoning, which is intractable for OWL 2 DL, and these algorithms had not been implemented yet for expressive ontology languages. We present the first implementation of semantic LBMs and report on experiments that compare them with syntactic LBMs extracted from real-life ontologies. Our study reveals whether semantic LBMs are worth the additional extraction effort, compared with syntactic LBMs

    A \textsf{C++} reasoner for the description logic \shdlssx (Extended Version)

    Full text link
    We present an ongoing implementation of a \ke\space based reasoner for a decidable fragment of stratified elementary set theory expressing the description logic \dlssx (shortly \shdlssx). The reasoner checks the consistency of \shdlssx-knowledge bases (KBs) represented in set-theoretic terms. It is implemented in \textsf{C++} and supports \shdlssx-KBs serialized in the OWL/XML format. To the best of our knowledge, this is the first attempt to implement a reasoner for the consistency checking of a description logic represented via a fragment of set theory that can also classify standard OWL ontologies.Comment: 15 pages. arXiv admin note: text overlap with arXiv:1702.03096, arXiv:1804.1122

    Ontology-based semantic interpretation of cylindricity specification in the next-generation GPS

    Get PDF
    Cylindricity specification is one of the most important geometrical specifications in geometrical product development. This specification can be referenced from the rules and examples in tolerance standards and technical handbooks in practice. These rules and examples are described in the form of natural language, which may cause ambiguities since different designers may have different understandings on a rule or an example. To address the ambiguous problem, a categorical data model of cylindricity specification in the next-generation Geometrical Product Specifications (GPS) was proposed at the University of Huddersfield. The modeling language used in the categorical data model is category language. Even though category language can develop a syntactically correct data model, it is difficult to interpret the semantics of the cylindricity specification explicitly. This paper proposes an ontology-based approach to interpret the semantics of cylindricity specification on the basis of the categorical data model. A scheme for translating the category language to the OWL 2 Web Ontology Language (OWL 2) is presented in this approach. Through such a scheme, the categorical data model is translated into a semantically enriched model, i.e. an OWL 2 ontology for cylindricity specification. This ontology can interpret the semantics of cylindricity specification explicitly. As the benefits of such semantic interpretation, consistency checking, inference procedures and semantic queries can be performed on the OWL 2 ontology. The proposed approach could be easily extended to support the semantic interpretations of other kinds of geometrical specifications
    corecore