1,014 research outputs found

    Analyzing autostereoscopic environment confgurations for the design of videogames

    Get PDF
    Stereoscopic devices are becoming more popular every day. The 3D visualization that these displays ofer is being used by videogame designers to enhance the user’s game experience. Autostereoscopic monitors ofer the possibility of obtaining this 3D visualization without the need for extra device. This fact makes them more attractive to videogame developers. However, the confguration of the cameras that make it possible to obtain an immersive 3D visualization inside the game is still an open problem. In this paper, some system confgurations that create autostereoscopic visualization in a 3D game engine were evaluated to obtain a good accommodation of the user experience with the game. To achieve this, user tests that take into account the movement of the player were carried out to evaluate diferent camera confgurations, namely, dynamic and static converging optical axis and parallel optical axis. The purpose of these tests is to evaluate the user experience regarding visual discomfort resulting from the movement of the objects, with the purpose of assessing the preference for one confguration or the other. The results show that the users tend to have a preference trend for the parallel optical axis confguration set. This confguration seems to be optimal because the area where the moving objects are focused is deeper than in the other confgurations

    Dynamic accommodative response to different visual stimuli (2D vs 3D) while watching television and while playing Nintendo 3DS console

    Get PDF
    PURPOSE: The aim of the present study was to compare the accommodative response to the same visual content presented in two dimensions (2D) and stereoscopically in three dimensions (3D) while participants were either watching a television (TV) or Nintendo 3DS console. METHODS: Twenty-two university students, with a mean age of 20.3 ± 2.0 years (mean ± S.D.), were recruited to participate in the TV experiment and fifteen, with a mean age of 20.1 ± 1.5 years took part in the Nintendo 3DS console study. The accommodative response was measured using a Grand Seiko WAM 5500 autorefractor. In the TV experiment, three conditions were used initially: the film was viewed in 2D mode (TV2D without glasses), the same sequence was watched in 2D whilst shutter-glasses were worn (TV2D with glasses) and the sequence was viewed in 3D mode (TV3D). Measurements were taken for 5 min in each condition, and these sections were sub-divided into ten 30-s segments to examine changes within the film. In addition, the accommodative response to three points of different disparity of one 3D frame was assessed for 30 s. In the Nintendo experiment, two conditions were employed - 2D viewing and stereoscopic 3D viewing. RESULTS: In the TV experiment no statistically significant differences were found between the accommodative response with TV2D without glasses (-0.38 ± 0.32D, mean ± S.D.) and TV3D (-0.37 ± 0.34D). Also, no differences were found between the various segments of the film, or between the accommodative response to different points of one frame (p > 0.05). A significant difference (p = 0.015) was found, however, between the TV2D with (-0.32 ± 0.32D) and without glasses (-0.38 ± 0.32D). In the Nintendo experiment the accommodative responses obtained in modes 2D (-2.57 ± 0.30D) and 3D (-2.49 ± 0.28D) were significantly different (paired t-test p = 0.03). CONCLUSIONS: The need to use shutter-glasses may affect the accommodative response during the viewing of displays, and the accommodative response when playing Nintendo 3DS in 3D mode is lower than when it is viewed in 2D.None of the authors has an interest in the products and devices mentioned in the study. This study has been funded by projects PTDC/SAU-BEB/098392/2008 funded by the Portuguese Fundacao para a Ciencia e Tecnologia through the European Social Fund

    Characterizing the Effects of Local Latency on Aim Performance in First Person Shooters

    Get PDF
    Real-time games such as first-person shooters (FPS) are sensitive to even small amounts of lag. The effects of network latency have been studied, but less is known about local latency -- that is, the lag caused by local sources such as input devices, displays, and the application. While local latency is important to gamers, we do not know how it affects aiming performance and whether we can reduce its negative effects. To explore these issues, we tested local latency in a variety of real-world gaming systems and carried out a controlled study focusing on targeting and tracking activities in an FPS game with varying degrees of local latency. In addition, we tested the ability of a lag compensation technique (based on aim assistance) to mitigate the negative effects. To motivate the need for these studies, we also examined how aim in FPS differs from pointing in standard 2D tasks, showing significant differences in performance metrics. Our studies found local latencies in the real-world range from 23 to 243~ms that cause significant and substantial degradation in performance (even for latencies as low as 41~ms). The studies also showed that our compensation technique worked well, reducing the problems caused by lag in the case of targeting, and removing the problem altogether in the case of tracking. Our work shows that local latency is a real and substantial problem -- but game developers can mitigate the problem with appropriate compensation methods

    The Effect of Stereoscopic (3D) Movies on Psychological and Physiological Experiences

    Get PDF
    Despite the recent rise in the popularity of 3D entertainment technology, there is surprisingly little research on the psychophysiological experience of watching 3D movies. Previous studies suggest that exposure to stereoscopic (3D) images in training environments (e.g., flight simulators) can cause discomforts including eyestrain and visually induced motion sickness. However, existing research on 3D entertainment has been mixed and has relied primarily on retrospective, non-experimental research designs, which do not allow us to draw clear causal conclusions. The purpose of this study was to examine the psychological and physiological effects of viewing 3D movies using a controlled, manipulated experiment. Eighty-two participants were randomly assigned to watch a segment of a nature movie in either stereoscopic (3D) or standard (2D) format and were measured on their psychological and physiological experiences. A multivariate analysis of covariance (MANCOVA) revealed statistically significant adverse effects of the 3D movie format. Specifically, watching a movie segment in 3D resulted in significantly more ocular discomfort (e.g., eyestrain) and feelings of disorientation compared to watching the same segment in 2D. Most notably, these results were observed after controlling for an individual’s self-reported level of intolerance for physical discomfort and pre-existing attitudes towards 3D movies. Interestingly, although nausea is often reported anecdotally in reaction to 3D movies, we did not find significant effects of the 3D format on feelings of nausea. These results suggest that the direct psychophysiological experience of 3D movies is complex and continued research is necessary to improve the comfort and safety of consumers

    Depth filtering for auto-stereoscopic mobile devices

    Get PDF
    In this work we address a scenario where 3D content is transmitted to a mobile terminal with 3D display capabilities. We consider the use of 2D plus depth format to represent the 3D content and focus on the generation of synthetic views in the terminal. We evaluate different types of smoothing filters that are applied to depth maps with the aim of reducing the disoccluded regions. The evaluation takes into account the reduction of holes in the synthetic view as well as the presence of geometrical distortion caused by the smoothing operation. The selected filter has been included within an implemented module for the VideoLan Client (VLC) software in order to render 3D content from the 2D plus depth data format

    Robust Stereoscopic Crosstalk Prediction

    Get PDF
    We propose a new metric to predict perceived crosstalk using the original images rather than both the original and ghosted images. The proposed metrics are based on color information. First, we extract a disparity map, a color difference map, and a color contrast map from original image pairs. Then, we use those maps to construct two new metrics (Vdispc and Vdlogc). Metric Vdispc considers the effect of the disparity map and the color difference map, while Vdlogc addresses the influence of the color contrast map. The prediction performance is evaluated using various types of stereoscopic crosstalk images. By incorporating Vdispc and Vdlogc, the new metric Vpdlc is proposed to achieve a higher correlation with the perceived subject crosstalk scores. Experimental results show that the new metrics achieve better performance than previous methods, which indicate that color information is one key factor for crosstalk visible prediction. Furthermore, we construct a new data set to evaluate our new metrics
    • …
    corecore