74,873 research outputs found

    Using the Mean Absolute Percentage Error for Regression Models

    Get PDF
    We study in this paper the consequences of using the Mean Absolute Percentage Error (MAPE) as a measure of quality for regression models. We show that finding the best model under the MAPE is equivalent to doing weighted Mean Absolute Error (MAE) regression. We show that universal consistency of Empirical Risk Minimization remains possible using the MAPE instead of the MAE.Comment: European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN), Apr 2015, Bruges, Belgium. 2015, Proceedings of the 23-th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN 2015

    Reducing offline evaluation bias of collaborative filtering algorithms

    Get PDF
    Recommendation systems have been integrated into the majority of large online systems to filter and rank information according to user profiles. It thus influences the way users interact with the system and, as a consequence, bias the evaluation of the performance of a recommendation algorithm computed using historical data (via offline evaluation). This paper presents a new application of a weighted offline evaluation to reduce this bias for collaborative filtering algorithms.Comment: European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN), Apr 2015, Bruges, Belgium. pp.137-142, 2015, Proceedings of the 23-th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN 2015

    Exact ICL maximization in a non-stationary time extension of the latent block model for dynamic networks

    Get PDF
    The latent block model (LBM) is a flexible probabilistic tool to describe interactions between node sets in bipartite networks, but it does not account for interactions of time varying intensity between nodes in unknown classes. In this paper we propose a non stationary temporal extension of the LBM that clusters simultaneously the two node sets of a bipartite network and constructs classes of time intervals on which interactions are stationary. The number of clusters as well as the membership to classes are obtained by maximizing the exact complete-data integrated likelihood relying on a greedy search approach. Experiments on simulated and real data are carried out in order to assess the proposed methodology.Comment: European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN), Apr 2015, Bruges, Belgium. pp.225-230, 2015, Proceedings of the 23-th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN 2015

    Detecting Adversarial Examples through Nonlinear Dimensionality Reduction

    Get PDF
    Deep neural networks are vulnerable to adversarial examples, i.e., carefully-perturbed inputs aimed to mislead classification. This work proposes a detection method based on combining non-linear dimensionality reduction and density estimation techniques. Our empirical findings show that the proposed approach is able to effectively detect adversarial examples crafted by non-adaptive attackers, i.e., not specifically tuned to bypass the detection method. Given our promising results, we plan to extend our analysis to adaptive attackers in future work.Comment: European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN) 201

    Dissimilarity Clustering by Hierarchical Multi-Level Refinement

    Full text link
    We introduce in this paper a new way of optimizing the natural extension of the quantization error using in k-means clustering to dissimilarity data. The proposed method is based on hierarchical clustering analysis combined with multi-level heuristic refinement. The method is computationally efficient and achieves better quantization errors than theComment: 20-th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN 2012), Bruges : Belgium (2012

    Modularity-Based Clustering for Network-Constrained Trajectories

    Full text link
    We present a novel clustering approach for moving object trajectories that are constrained by an underlying road network. The approach builds a similarity graph based on these trajectories then uses modularity-optimization hiearchical graph clustering to regroup trajectories with similar profiles. Our experimental study shows the superiority of the proposed approach over classic hierarchical clustering and gives a brief insight to visualization of the clustering results.Comment: 20-th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN 2012), Bruges : Belgium (2012

    A simple technique for improving multi-class classification with neural networks

    Get PDF
    We present a novel method to perform multi-class pattern classification with neural networks and test it on a challenging 3D hand gesture recognition problem. Our method consists of a standard one-against-all (OAA) classification, followed by another network layer classifying the resulting class scores, possibly augmented by the original raw input vector. This allows the network to disambiguate hard-to-separate classes as the distribution of class scores carries considerable information as well, and is in fact often used for assessing the confidence of a decision. We show that by this approach we are able to significantly boost our results, overall as well as for particular difficult cases, on the hard 10-class gesture classification task.Comment: European Symposium on artificial neural networks (ESANN), Jun 2015, Bruges, Belgiu
    • …
    corecore