13,670 research outputs found

    Molecular biological methods for studying the gut microbiota : the EU human gut flora project

    Get PDF
    Seven European laboratories co-operated in a joint project (FAIR CT97-3035) to develop, refine and apply molecular methods towards facilitating elucidation of the complex composition of the human intestinal microflora and to devise robust methodologies for monitoring the gut flora in response to diet. An extensive database of 16S rRNA sequences for tracking intestinal bacteria was generated by sequencing the 16S rRNA genes of new faecal isolates and of clones obtained by amplification with polymerase chain reaction (PCR) on faecal DNA from subjects belonging to different age groups. The analyses indicated that the number of different species (diversity) present in the human gut increased with age. The sequence information generated, provided the basis for design of 16S rRNA-directed oligonucleotide probes to specifically detect bacteria at various levels of phylogenetic hierarchy. The probes were tested for their specificity and used in whole-cell and dot-blot hybridisations. The applicability of the developed methods was demonstrated in several studies and the major outcomes are described

    PLoS One

    Get PDF

    Molecular diversity of arbuscular mycorrhizal fungi colonising Hyacinthoides non-scripta (bluebell) in a seminatural woodland

    Get PDF
    Arbuscular mycorrhizal (AM) fungi form symbiotic associations with plant roots. Around 150 species have been described and it is becoming clear that many of these species have different functional properties. The species diversity of AM fungi actively growing in roots is therefore an important component of ecosystem diversity. However, it is difficult to identify AM fungi below the genus level from morphology in planta, as they possess few informative characters. We present here a molecular method for identifying infrageneric sequence types that estimate the taxonomic diversity of AM fungi present in actively growing roots. Bluebell roots were sampled from beneath two different canopy types, oak and sycamore, and DNA sequences were amplified from roots by the polymerase chain reaction with fungal-specific primers for part of the small subunit ribosomal RNA gene. Restriction fragment length polymorphism among 141 clones was assessed and 62 clones were sequenced. When aligned, discrete sequence groups emerged that cluster into the three families of AM fungi: Acaulosporaceae, Gigasporaceae and Glomaceae. The sequence variation is consistent with rRNA secondary structure. The same sequence types were found at both sampling times. Frequencies of Scutellospora increased in December, and Acaulospora increased in abundance in July. Sites with a sycamore canopy show a reduced abundance of Acaulospora, and those with oak showed a reduced abundance of Glomus. These distribution patterns are consistent with previous morphological studies carried out in this woodland. The molecular method provides an alternative method of estimating the distribution and abundance of AM fungi, and has the potential to provide greater resolution at the infrageneric level

    The Small Subunit rRNA Modification Database

    Get PDF
    The Small Subunit rRNA Modification Database provides a listing of reported post-transcriptionally modified nucleosides and sequence sites in small subunit rRNAs from bacteria, archaea and eukarya. Data are compiled from reports of full or partial rRNA sequences, including RNase T1 oligonucleotide catalogs reported in earlier literature in studies of phylogenetic relatedness. Options for data presentation include full sequence maps, some of which have been assembled by database curators with the aid of contemporary gene sequence data, and tabular forms organized by source organism or chemical identity of the modification. A total of 32 rRNA sequence alignments are provided, annotated with sites of modification and chemical identities of modifications if known, with provision for scrolling full sequences or user-dictated subsequences for comparative viewing for organisms of interest. The database can be accessed through the World Wide Web at http://medlib.med.utah.edu/SSUmods
    • …
    corecore