148 research outputs found

    The Euler-Lagrange Equation for Interpolating Sequence of Landmark Datasets

    Full text link

    Video Interpolation using Optical Flow and Laplacian Smoothness

    Full text link
    Non-rigid video interpolation is a common computer vision task. In this paper we present an optical flow approach which adopts a Laplacian Cotangent Mesh constraint to enhance the local smoothness. Similar to Li et al., our approach adopts a mesh to the image with a resolution up to one vertex per pixel and uses angle constraints to ensure sensible local deformations between image pairs. The Laplacian Mesh constraints are expressed wholly inside the optical flow optimization, and can be applied in a straightforward manner to a wide range of image tracking and registration problems. We evaluate our approach by testing on several benchmark datasets, including the Middlebury and Garg et al. datasets. In addition, we show application of our method for constructing 3D Morphable Facial Models from dynamic 3D data

    Measuring Deformations and Illumination Changes in Images with Applications to Face Recognition

    Get PDF
    This thesis explores object deformation and lighting change in images, proposing methods that account for both variabilities within a single framework. We construct a deformation- and lighting-insensitive metric that assigns a cost to a pair of images based on their similarity. The primary applications discussed will be in the domain of face recognition, because faces provide a good and important example of highly structured yet deformable objects with readily available datasets. However, our methods can be applied to any domain with deformations and lighting change. In order to model variations in expression, establishing point correspondences between faces is essential, and a primary goal of this thesis is to determine dense correspondences between pairs of face images, assigning a cost to each point pairing based on a novel image metric. We show that an image manifold can be defined to model deformations and illumination changes. Images are considered as points on a high-dimensional manifold given local structure by our new metric, where costs are based on changes in shape and intensity. Curves on this manifold describe transformations such as deformations and lighting changes to connect nearby images, or larger identity changes connecting images far apart. This allows deformations to be introduced gradually over the course of several images, where correspondences are well-defined between every pair of adjacent images along a path. The similarity between two images on the manifold can be defined as the length of the geodesic that connects them. The new local metric is validated in an optical flow-like framework where it is used to determine a dense correspondence vector field between pairs of images. We then demonstrate how to find geodesics between pairs of images on a Riemannian image manifold. The new lighting-insensitive metric is described in the wavelet domain where it is able to handle moderate amounts of deformation, and allows us to derive an algorithm where the analytic geodesics between images can be computed extremely efficiently. To handle larger deformations in addition to changes in illumination, we consider an algorithmic framework where deformations are modeled with diffeomorphisms. We present preliminary implementations of the diffeomorphic framework, and suggest how this work can be extended for further applications

    Geodesic shooting for anatomical curve registration on the plane

    No full text
    The aim of the work presented in this thesis is to develop a method of characterising the shape of curves in the plane that is independent of the parameterisation of the curve. It is important to remove the effect of a specific parameterisation of a curve because it is possible for two curves to have the same shape while having different parameterisations. The characterisation is accomplished by matching curves via deformations, and using the deformations to characterise the difference between them. We specifically aim for a method that is able to characterise the kind of complex curves found in cross sections of the human nasal cavity. In order to match one curve to another, we derive the equations of motion for a geodesic flow, and seeking the flow that deforms an embedded reference curve into the target curve we wish to characterise. The geodesic flow is itself characterised by a conjugate momentum on, and normal to, the reference curve, giving a one dimensional descriptive signal of the deformation. This descriptive signal contains all of the information required to generate the target curve from the reference curve. We therefore say that this descriptive signal characterises the target curve with respect to the reference curve. The descriptive signal is found using a shooting approach, requiring a functional to measure how closely overlaid are two curves. Formulating the problem as an optimisation problem, we first present a parameterisation-independent functional based on geometric currents, but show that we encounter problems in this matching functional due to local minima. We then present a second approach in which we formulate the problem as a landmark matching problem. Since we seek a characterisation that is independent of the choice of landmarks, and the landmark matching functional is parameterisation dependent, we minimise the functional over all reparameterisations of the reference curve. These two approaches solve equivalent problems. We present the results of the reparameterisation-based matching, and show that they overcome the problems observed in the currents-based method. In particular we demonstrate that the method is able to match complex nasal geometries, and show how the descriptive signal can be used to interpolate between two dimensional slices of three dimensional objects to reconstruct three dimensional surfaces representing the objects. Though here we implement the geodesic flow in two dimensions, we note that the flow could be extended to three dimensional space. Since the reparameterisation based matching functional is trivial to implement in three dimensions, this would allow for the characterisation of both curves and surfaces in three dimensional space

    Variational Image Segmentation with Constraints

    Get PDF
    The research of Huizhu Pan addresses the problem of image segmentation with constraints though designing and solving various variational models. A novel constraint term is designed for the use of landmarks in image segmentation. Two region-based segmentation models were proposed where the segmentation contour passes through landmark points. A more stable and memory efficient solution to the self-repelling snakes model, a variational model with the topology preservation constraint, was also designed

    Proceedings of the First International Workshop on Mathematical Foundations of Computational Anatomy (MFCA'06) - Geometrical and Statistical Methods for Modelling Biological Shape Variability

    Get PDF
    International audienceNon-linear registration and shape analysis are well developed research topic in the medical image analysis community. There is nowadays a growing number of methods that can faithfully deal with the underlying biomechanical behaviour of intra-subject shape deformations. However, it is more difficult to relate the anatomical shape of different subjects. The goal of computational anatomy is to analyse and to statistically model this specific type of geometrical information. In the absence of any justified physical model, a natural attitude is to explore very general mathematical methods, for instance diffeomorphisms. However, working with such infinite dimensional space raises some deep computational and mathematical problems. In particular, one of the key problem is to do statistics. Likewise, modelling the variability of surfaces leads to rely on shape spaces that are much more complex than for curves. To cope with these, different methodological and computational frameworks have been proposed. The goal of the workshop was to foster interactions between researchers investigating the combination of geometry and statistics for modelling biological shape variability from image and surfaces. A special emphasis was put on theoretical developments, applications and results being welcomed as illustrations. Contributions were solicited in the following areas: * Riemannian and group theoretical methods on non-linear transformation spaces * Advanced statistics on deformations and shapes * Metrics for computational anatomy * Geometry and statistics of surfaces 26 submissions of very high quality were recieved and were reviewed by two members of the programm committee. 12 papers were finally selected for oral presentations and 8 for poster presentations. 16 of these papers are published in these proceedings, and 4 papers are published in the proceedings of MICCAI'06 (for copyright reasons, only extended abstracts are provided here)

    Do ideas have shape? Plato's theory of forms as the continuous limit of artificial neural networks

    Get PDF
    We show that ResNets converge, in the infinite depth limit, to a generalization of image registration algorithms. In this generalization, images are replaced by abstractions (ideas) living in high dimensional RKHS spaces, and material points are replaced by data points. Whereas computational anatomy aligns images via deformations of the material space, this generalization aligns ideas by via transformations of their RKHS. This identification of ResNets as idea registration algorithms has several remarkable consequences. The search for good architectures can be reduced to that of good kernels, and we show that the composition of idea registration blocks with reduced equivariant multi-channel kernels (introduced here) recovers and generalizes CNNs to arbitrary spaces and groups of transformations. Minimizers of L2 regularized ResNets satisfy a discrete least action principle implying the near preservation of the norm of weights and biases across layers. The parameters of trained ResNets can be identified as solutions of an autonomous Hamiltonian system defined by the activation function and the architecture of the ANN. Momenta variables provide a sparse representation of the parameters of a ResNet. The registration regularization strategy provides a provably robust alternative to Dropout for ANNs. Pointwise RKHS error estimates lead to deterministic error estimates for ANNs

    Computerized Analysis of Magnetic Resonance Images to Study Cerebral Anatomy in Developing Neonates

    Get PDF
    The study of cerebral anatomy in developing neonates is of great importance for the understanding of brain development during the early period of life. This dissertation therefore focuses on three challenges in the modelling of cerebral anatomy in neonates during brain development. The methods that have been developed all use Magnetic Resonance Images (MRI) as source data. To facilitate study of vascular development in the neonatal period, a set of image analysis algorithms are developed to automatically extract and model cerebral vessel trees. The whole process consists of cerebral vessel tracking from automatically placed seed points, vessel tree generation, and vasculature registration and matching. These algorithms have been tested on clinical Time-of- Flight (TOF) MR angiographic datasets. To facilitate study of the neonatal cortex a complete cerebral cortex segmentation and reconstruction pipeline has been developed. Segmentation of the neonatal cortex is not effectively done by existing algorithms designed for the adult brain because the contrast between grey and white matter is reversed. This causes pixels containing tissue mixtures to be incorrectly labelled by conventional methods. The neonatal cortical segmentation method that has been developed is based on a novel expectation-maximization (EM) method with explicit correction for mislabelled partial volume voxels. Based on the resulting cortical segmentation, an implicit surface evolution technique is adopted for the reconstruction of the cortex in neonates. The performance of the method is investigated by performing a detailed landmark study. To facilitate study of cortical development, a cortical surface registration algorithm for aligning the cortical surface is developed. The method first inflates extracted cortical surfaces and then performs a non-rigid surface registration using free-form deformations (FFDs) to remove residual alignment. Validation experiments using data labelled by an expert observer demonstrate that the method can capture local changes and follow the growth of specific sulcus
    corecore