48,111 research outputs found

    Using Random Forests to Describe Equity in Higher Education: A Critical Quantitative Analysis of Utah’s Postsecondary Pipelines

    Get PDF
    The following work examines the Random Forest (RF) algorithm as a tool for predicting student outcomes and interrogating the equity of postsecondary education pipelines. The RF model, created using longitudinal data of 41,303 students from Utah\u27s 2008 high school graduation cohort, is compared to logistic and linear models, which are commonly used to predict college access and success. Substantially, this work finds High School GPA to be the best predictor of postsecondary GPA, whereas commonly used ACT and AP test scores are not nearly as important. Each model identified several demographic disparities in higher education access, most significantly the effects of individual-level economic disadvantage. District- and school-level factors such as the proportion of Low Income students and the proportion of Underrepresented Racial Minority (URM) students were important and negatively associated with postsecondary success. Methodologically, the RF model was able to capture non-linearity in the predictive power of school- and district-level variables, a key finding which was undetectable using linear models. The RF algorithm outperforms logistic models in prediction of student enrollment, performs similarly to linear models in prediction of postsecondary GPA, and excels both models in its descriptions of non-linear variable relationships. RF provides novel interpretations of data, challenges conclusions from linear models, and has enormous potential to further the literature around equity in postsecondary pipelines

    The efficacy of using data mining techniques in predicting academic performance of architecture students.

    Get PDF
    In recent years, there has been a tremendous increase in the number of applicants seeking placement in the undergraduate architecture programme. It is important to identify new intakes who possess the capability to succeed during the selection phase of admission at universities. Admission variable (i.e. prior academic achievement) is one of the most important criteria considered during selection process. The present study investigates the efficacy of using data mining techniques to predict academic performance of architecture student based on information contained in prior academic achievement. The input variables, i.e. prior academic achievement, were extracted from students' academic records. Logistic regression and support vector machine (SVM) are the data mining techniques adopted in this study. The collected data was divided into two parts. The first part was used for training the model, while the other part was used to evaluate the predictive accuracy of the developed models. The results revealed that SVM model outperformed the logistic regression model in terms of accuracy. Taken together, it is evident that prior academic achievement are good predictors of academic performance of architecture students. Although the factors affecting academic performance of students are numerous, the present study focuses on the effect of prior academic achievement on academic performance of architecture students. The developed SVM model can be used a decision-making tool for selecting new intakes into the architecture program at Nigerian universities

    Predicting the academic success of architecture students by pre-enrolment requirement: using machine-learning techniques

    Get PDF
    In recent years, there has been an increase in the number of applicants seeking admission into architecture programmes. As expected, prior academic performance (also referred to as pre-enrolment requirement) is a major factor considered during the process of selecting applicants. In the present study, machine learning models were used to predict academic success of architecture students based on information provided in prior academic performance. Two modeling techniques, namely K-nearest neighbour (k-NN) and linear discriminant analysis were applied in the study. It was found that K-nearest neighbour (k-NN) outperforms the linear discriminant analysis model in terms of accuracy. In addition, grades obtained in mathematics (at ordinary level examinations) had a significant impact on the academic success of undergraduate architecture students. This paper makes a modest contribution to the ongoing discussion on the relationship between prior academic performance and academic success of undergraduate students by evaluating this proposition. One of the issues that emerges from these findings is that prior academic performance can be used as a predictor of academic success in undergraduate architecture programmes. Overall, the developed k-NN model can serve as a valuable tool during the process of selecting new intakes into undergraduate architecture programmes in Nigeria

    A Multi-Gene Genetic Programming Application for Predicting Students Failure at School

    Full text link
    Several efforts to predict student failure rate (SFR) at school accurately still remains a core problem area faced by many in the educational sector. The procedure for forecasting SFR are rigid and most often times require data scaling or conversion into binary form such as is the case of the logistic model which may lead to lose of information and effect size attenuation. Also, the high number of factors, incomplete and unbalanced dataset, and black boxing issues as in Artificial Neural Networks and Fuzzy logic systems exposes the need for more efficient tools. Currently the application of Genetic Programming (GP) holds great promises and has produced tremendous positive results in different sectors. In this regard, this study developed GPSFARPS, a software application to provide a robust solution to the prediction of SFR using an evolutionary algorithm known as multi-gene genetic programming. The approach is validated by feeding a testing data set to the evolved GP models. Result obtained from GPSFARPS simulations show its unique ability to evolve a suitable failure rate expression with a fast convergence at 30 generations from a maximum specified generation of 500. The multi-gene system was also able to minimize the evolved model expression and accurately predict student failure rate using a subset of the original expressionComment: 14 pages, 9 figures, Journal paper. arXiv admin note: text overlap with arXiv:1403.0623 by other author
    • …
    corecore