541 research outputs found

    Spectral Convergence of the connection Laplacian from random samples

    Full text link
    Spectral methods that are based on eigenvectors and eigenvalues of discrete graph Laplacians, such as Diffusion Maps and Laplacian Eigenmaps are often used for manifold learning and non-linear dimensionality reduction. It was previously shown by Belkin and Niyogi \cite{belkin_niyogi:2007} that the eigenvectors and eigenvalues of the graph Laplacian converge to the eigenfunctions and eigenvalues of the Laplace-Beltrami operator of the manifold in the limit of infinitely many data points sampled independently from the uniform distribution over the manifold. Recently, we introduced Vector Diffusion Maps and showed that the connection Laplacian of the tangent bundle of the manifold can be approximated from random samples. In this paper, we present a unified framework for approximating other connection Laplacians over the manifold by considering its principle bundle structure. We prove that the eigenvectors and eigenvalues of these Laplacians converge in the limit of infinitely many independent random samples. We generalize the spectral convergence results to the case where the data points are sampled from a non-uniform distribution, and for manifolds with and without boundary

    Cardiac motion estimation using covariant derivatives and Helmholtz decomposition

    Get PDF
    The investigation and quantification of cardiac movement is important for assessment of cardiac abnormalities and treatment effectiveness. Therefore we consider new aperture problem-free methods to track cardiac motion from 2-dimensional MR tagged images and corresponding sine-phase images. Tracking is achieved by following the movement of scale-space maxima, yielding a sparse set of linear features of the unknown optic flow vector field. Interpolation/reconstruction of the velocity field is then carried out by minimizing an energy functional which is a Sobolev-norm expressed in covariant derivatives (rather than standard derivatives). These covariant derivatives are used to express prior knowledge about the velocity field in the variational framework employed. They are defined on a fiber bundle where sections coincide with vector fields. Furthermore, the optic flow vector field is decomposed in a divergence free and a rotation free part, using our multi-scale Helmholtz decomposition algorithm that combines diffusion and Helmholtz decomposition in a single non-singular analytic kernel operator. Finally, we combine this multi-scale Helmholtz decomposition with vector field reconstruction (based on covariant derivatives) in a single algorithm and present some experiments of cardiac motion estimation. Further experiments on phantom data with ground truth show that both the inclusion of covariant derivatives and the inclusion of the multi-scale Helmholtz decomposition improves the optic flow reconstruction

    Embedding Riemannian Manifolds by the Heat Kernel of the Connection Laplacian

    Full text link
    Given a class of closed Riemannian manifolds with prescribed geometric conditions, we introduce an embedding of the manifolds into â„“2\ell^2 based on the heat kernel of the Connection Laplacian associated with the Levi-Civita connection on the tangent bundle. As a result, we can construct a distance in this class which leads to a pre-compactness theorem on the class under consideration
    • …
    corecore