100 research outputs found

    A Survey on Cellular-connected UAVs: Design Challenges, Enabling 5G/B5G Innovations, and Experimental Advancements

    Full text link
    As an emerging field of aerial robotics, Unmanned Aerial Vehicles (UAVs) have gained significant research interest within the wireless networking research community. As soon as national legislations allow UAVs to fly autonomously, we will see swarms of UAV populating the sky of our smart cities to accomplish different missions: parcel delivery, infrastructure monitoring, event filming, surveillance, tracking, etc. The UAV ecosystem can benefit from existing 5G/B5G cellular networks, which can be exploited in different ways to enhance UAV communications. Because of the inherent characteristics of UAV pertaining to flexible mobility in 3D space, autonomous operation and intelligent placement, these smart devices cater to wide range of wireless applications and use cases. This work aims at presenting an in-depth exploration of integration synergies between 5G/B5G cellular systems and UAV technology, where the UAV is integrated as a new aerial User Equipment (UE) to existing cellular networks. In this integration, the UAVs perform the role of flying users within cellular coverage, thus they are termed as cellular-connected UAVs (a.k.a. UAV-UE, drone-UE, 5G-connected drone, or aerial user). The main focus of this work is to present an extensive study of integration challenges along with key 5G/B5G technological innovations and ongoing efforts in design prototyping and field trials corroborating cellular-connected UAVs. This study highlights recent progress updates with respect to 3GPP standardization and emphasizes socio-economic concerns that must be accounted before successful adoption of this promising technology. Various open problems paving the path to future research opportunities are also discussed.Comment: 30 pages, 18 figures, 9 tables, 102 references, journal submissio

    Coexistence of UAVs and Terrestrial Users in Millimeter-Wave Urban Networks

    Full text link
    5G millimeter-wave (mmWave) cellular networks are in the early phase of commercial deployments and present a unique opportunity for robust, high-data-rate communication to unmanned aerial vehicles (UAVs). A fundamental question is whether and how mmWave networks designed for terrestrial users should be modified to serve UAVs. The paper invokes realistic cell layouts, antenna patterns, and channel models trained from extensive ray tracing data to assess the performance of various network alternatives. Importantly, the study considers the addition of dedicated uptilted rooftop-mounted cells for aerial coverage, as well as novel spectrum sharing modes between terrestrial and aerial network operators. The effect of power control and of multiuser multiple-input multiple-output are also studied

    A Comprehensive Overview on 5G-and-Beyond Networks with UAVs: From Communications to Sensing and Intelligence

    Full text link
    Due to the advancements in cellular technologies and the dense deployment of cellular infrastructure, integrating unmanned aerial vehicles (UAVs) into the fifth-generation (5G) and beyond cellular networks is a promising solution to achieve safe UAV operation as well as enabling diversified applications with mission-specific payload data delivery. In particular, 5G networks need to support three typical usage scenarios, namely, enhanced mobile broadband (eMBB), ultra-reliable low-latency communications (URLLC), and massive machine-type communications (mMTC). On the one hand, UAVs can be leveraged as cost-effective aerial platforms to provide ground users with enhanced communication services by exploiting their high cruising altitude and controllable maneuverability in three-dimensional (3D) space. On the other hand, providing such communication services simultaneously for both UAV and ground users poses new challenges due to the need for ubiquitous 3D signal coverage as well as the strong air-ground network interference. Besides the requirement of high-performance wireless communications, the ability to support effective and efficient sensing as well as network intelligence is also essential for 5G-and-beyond 3D heterogeneous wireless networks with coexisting aerial and ground users. In this paper, we provide a comprehensive overview of the latest research efforts on integrating UAVs into cellular networks, with an emphasis on how to exploit advanced techniques (e.g., intelligent reflecting surface, short packet transmission, energy harvesting, joint communication and radar sensing, and edge intelligence) to meet the diversified service requirements of next-generation wireless systems. Moreover, we highlight important directions for further investigation in future work.Comment: Accepted by IEEE JSA

    UAV Communications in Integrated Terrestrial and Non-terrestrial Networks

    Full text link
    With growing interest in integrating terrestrial networks (TNs) and non-terrestrial networks (NTNs) to connect the unconnected, a key question is whether this new paradigm could also be opportunistically exploited to augment service in urban areas. We assess this possibility in the context of an integrated TN-NTN, comprising a ground cellular deployment paired with a Low Earth Orbit (LEO) satellite constellation, providing sub-6 GHz connectivity to an urban area populated by ground users (GUEs) and uncrewed aerial vehicles (UAVs). Our study reveals that offloading UAV traffic to the NTN segment drastically reduces the downlink outage of UAVs from 70% to nearly zero, also boosting their uplink signal quality as long as the LEO satellite constellation is sufficiently dense to guarantee a minimum elevation angle. Offloading UAVs to the NTN also benefits coexisting GUEs, preventing uplink outages of around 12% that GUEs would otherwise incur. Despite the limited bandwidth available below 6 GHz, NTN-offloaded UAVs meet command and control rate requirements even across an area the size of Barcelona with as many as one active UAV per cell. Smaller UAV populations yield proportionally higher rates, potentially enabling aerial broadband applications

    Survey on 6G Frontiers: Trends, Applications, Requirements, Technologies and Future Research

    Get PDF
    Emerging applications such as Internet of Everything, Holographic Telepresence, collaborative robots, and space and deep-sea tourism are already highlighting the limitations of existing fifth-generation (5G) mobile networks. These limitations are in terms of data-rate, latency, reliability, availability, processing, connection density and global coverage, spanning over ground, underwater and space. The sixth-generation (6G) of mobile networks are expected to burgeon in the coming decade to address these limitations. The development of 6G vision, applications, technologies and standards has already become a popular research theme in academia and the industry. In this paper, we provide a comprehensive survey of the current developments towards 6G. We highlight the societal and technological trends that initiate the drive towards 6G. Emerging applications to realize the demands raised by 6G driving trends are discussed subsequently. We also elaborate the requirements that are necessary to realize the 6G applications. Then we present the key enabling technologies in detail. We also outline current research projects and activities including standardization efforts towards the development of 6G. Finally, we summarize lessons learned from state-of-the-art research and discuss technical challenges that would shed a new light on future research directions towards 6G

    Millimeter-Wave UAV Coveragein Urban Environments

    Full text link
    With growing interest in mmWave connectivity for UAVs, a basic question is whether networks intended for terrestrial users can provide sufficient aerial coverage as well. To assess this possibility, the paper proposes a novel evaluation methodology using generative models trained on detailed ray tracing data. These models capture complex propagation characteristics and can be readily combined with antenna and beamforming assumptions. Extensive simulation using these models indicate that standard (street-level and downtilted) base stations at typical microcellular densities can indeed provide satisfactory UAV coverage. Interestingly, the coverage is possible via a conjunction of antenna sidelobes and strong reflections. With sparser deployments, the coverage is only guaranteed at progressively higher altitudes. Additional dedicated (rooftop-mounted and uptilted) base stations strengthen the coverage provided that their density is comparable to that of the standard deployment, and would be instrumental for sparse deployments of the latter

    Achieving high UAV uplink throughput by using beamforming on board

    Get PDF
    corecore