7 research outputs found

    Subject Index Volumes 1–200

    Get PDF

    On the structure of graphs with forbidden induced substructures

    Get PDF
    One of the central goals in extremal combinatorics is to understand how the global structure of a combinatorial object, e.g. a graph, hypergraph or set system, is affected by local constraints. In this thesis we are concerned with structural properties of graphs and hypergraphs which locally do not look like some type of forbidden induced pattern. Patterns can be single subgraphs, families of subgraphs, or in the multicolour version colourings or families of colourings of subgraphs. ErdƑs and Szekeres\u27s quantitative version of Ramsey\u27s theorem asserts that in every 22-edge-colouring of the complete graph on nn vertices there is a monochromatic clique on at least 12log⁡n\frac{1}{2}\log n vertices. The famous ErdƑs-Hajnal conjecture asserts that forbidding fixed colourings on subgraphs ensures much larger monochromatic cliques. The conjecture is open in general, though a few partial results are known. The first part of this thesis will be concerned with different variants of this conjecture: A bipartite variant, a multicolour variant, and an order-size variant for hypergraphs. In the second part of this thesis we focus more on order-size pairs; an order-size pair (n,e)(n,e) is the family consisting of all graphs of order nn and size ee, i.e. on nn vertices with ee edges. We consider order-size pairs in different settings: The graph setting, the bipartite setting and the hypergraph setting. In all these settings we investigate the existence of absolutely avoidable pairs, i.e. fixed pairs that are avoided by all order-size pairs with sufficiently large order, and also forcing densities of order-size pairs (m,f)(m,f), i.e. for nn approaching infinity, the limit superior of the fraction of all possible sizes ee, such that the order-size pair (n,e)(n,e) does not avoid the pair (m,f)(m,f)

    Advances in Discrete Applied Mathematics and Graph Theory

    Get PDF
    The present reprint contains twelve papers published in the Special Issue “Advances in Discrete Applied Mathematics and Graph Theory, 2021” of the MDPI Mathematics journal, which cover a wide range of topics connected to the theory and applications of Graph Theory and Discrete Applied Mathematics. The focus of the majority of papers is on recent advances in graph theory and applications in chemical graph theory. In particular, the topics studied include bipartite and multipartite Ramsey numbers, graph coloring and chromatic numbers, several varieties of domination (Double Roman, Quasi-Total Roman, Total 3-Roman) and two graph indices of interest in chemical graph theory (Sombor index, generalized ABC index), as well as hyperspaces of graphs and local inclusive distance vertex irregular graphs

    36th International Symposium on Theoretical Aspects of Computer Science: STACS 2019, March 13-16, 2019, Berlin, Germany

    Get PDF

    LIPIcs, Volume 261, ICALP 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 261, ICALP 2023, Complete Volum

    Counting patterns in strings and graphs

    Get PDF
    We study problems related to finding and counting patterns in strings and graphs. In the string-regime, we are interested in counting how many substring of a text are at Hamming (or edit) distance at most to a pattern . Among others, we are interested in the fully-compressed setting, where both and are given in a compressed representation. For both distance measures, we give the first algorithm that runs in (almost) linear time in the size of the compressed representations. We obtain the algorithms by new and tight structural insights into the solution structure of the problems. In the graph-regime, we study problems related to counting homomorphisms between graphs. In particular, we study the parameterized complexity of the problem #IndSub(), where we are to count all -vertex induced subgraphs of a graph that satisfy the property . Based on a theory of LovĂĄsz, Curticapean et al., we express #IndSub() as a linear combination of graph homomorphism numbers to obtain #W[1]-hardness and almost tight conditional lower bounds for properties that are monotone or that depend only on the number of edges of a graph. Thereby, we prove a conjecture by Jerrum and Meeks. In addition, we investigate the parameterized complexity of the problem #Hom(ℋ → ) for graph classes ℋ and . In particular, we show that for any problem in the class #W[1], there are classes ℋ_ and _ such that is equivalent to #Hom(ℋ_ → _ ).Wir untersuchen Probleme im Zusammenhang mit dem Finden und ZĂ€hlen von Mustern in Strings und Graphen. Im Stringbereich ist die Aufgabe, alle Teilstrings eines Strings zu bestimmen, die eine Hamming- (oder Editier-)Distanz von höchstens zu einem Pattern haben. Unter anderem sind wir am voll-komprimierten Setting interessiert, in dem sowohl , als auch in komprimierter Form gegeben sind. FĂŒr beide Abstandsbegriffe entwickeln wir die ersten Algorithmen mit einer (fast) linearen Laufzeit in der GrĂ¶ĂŸe der komprimierten Darstellungen. Die Algorithmen nutzen neue strukturelle Einsichten in die Lösungsstruktur der Probleme. Im Graphenbereich betrachten wir Probleme im Zusammenhang mit dem ZĂ€hlen von Homomorphismen zwischen Graphen. Im Besonderen betrachten wir das Problem #IndSub(), bei dem alle induzierten Subgraphen mit Knoten zu zĂ€hlen sind, die die Eigenschaft haben. Basierend auf einer Theorie von LovĂĄsz, Curticapean, Dell, and Marx drĂŒcken wir #IndSub() als Linearkombination von Homomorphismen-Zahlen aus um #W[1]-HĂ€rte und fast scharfe konditionale untere Laufzeitschranken zu erhalten fĂŒr , die monoton sind oder nur auf der Kantenanzahl der Graphen basieren. Somit beweisen wir eine Vermutung von Jerrum and Meeks. Weiterhin beschĂ€ftigen wir uns mit der KomplexitĂ€t des Problems #Hom(ℋ → ) fĂŒr Graphklassen ℋ und . Im Besonderen zeigen wir, dass es fĂŒr jedes Problem in #W[1] Graphklassen ℋ_ und _ gibt, sodass Ă€quivalent zu #Hom(ℋ_ → _ ) ist
    corecore