15,788 research outputs found

    Regular Cost Functions, Part I: Logic and Algebra over Words

    Full text link
    The theory of regular cost functions is a quantitative extension to the classical notion of regularity. A cost function associates to each input a non-negative integer value (or infinity), as opposed to languages which only associate to each input the two values "inside" and "outside". This theory is a continuation of the works on distance automata and similar models. These models of automata have been successfully used for solving the star-height problem, the finite power property, the finite substitution problem, the relative inclusion star-height problem and the boundedness problem for monadic-second order logic over words. Our notion of regularity can be -- as in the classical theory of regular languages -- equivalently defined in terms of automata, expressions, algebraic recognisability, and by a variant of the monadic second-order logic. These equivalences are strict extensions of the corresponding classical results. The present paper introduces the cost monadic logic, the quantitative extension to the notion of monadic second-order logic we use, and show that some problems of existence of bounds are decidable for this logic. This is achieved by introducing the corresponding algebraic formalism: stabilisation monoids.Comment: 47 page

    Symbolic Algorithms for Language Equivalence and Kleene Algebra with Tests

    Get PDF
    We first propose algorithms for checking language equivalence of finite automata over a large alphabet. We use symbolic automata, where the transition function is compactly represented using a (multi-terminal) binary decision diagrams (BDD). The key idea consists in computing a bisimulation by exploring reachable pairs symbolically, so as to avoid redundancies. This idea can be combined with already existing optimisations, and we show in particular a nice integration with the disjoint sets forest data-structure from Hopcroft and Karp's standard algorithm. Then we consider Kleene algebra with tests (KAT), an algebraic theory that can be used for verification in various domains ranging from compiler optimisation to network programming analysis. This theory is decidable by reduction to language equivalence of automata on guarded strings, a particular kind of automata that have exponentially large alphabets. We propose several methods allowing to construct symbolic automata out of KAT expressions, based either on Brzozowski's derivatives or standard automata constructions. All in all, this results in efficient algorithms for deciding equivalence of KAT expressions

    Boundedness in languages of infinite words

    Full text link
    We define a new class of languages of ω\omega-words, strictly extending ω\omega-regular languages. One way to present this new class is by a type of regular expressions. The new expressions are an extension of ω\omega-regular expressions where two new variants of the Kleene star L∗L^* are added: LBL^B and LSL^S. These new exponents are used to say that parts of the input word have bounded size, and that parts of the input can have arbitrarily large sizes, respectively. For instance, the expression (aBb)ω(a^Bb)^\omega represents the language of infinite words over the letters a,ba,b where there is a common bound on the number of consecutive letters aa. The expression (aSb)ω(a^Sb)^\omega represents a similar language, but this time the distance between consecutive bb's is required to tend toward the infinite. We develop a theory for these languages, with a focus on decidability and closure. We define an equivalent automaton model, extending B\"uchi automata. The main technical result is a complementation lemma that works for languages where only one type of exponent---either LBL^B or LSL^S---is used. We use the closure and decidability results to obtain partial decidability results for the logic MSOLB, a logic obtained by extending monadic second-order logic with new quantifiers that speak about the size of sets

    An introduction to finite automata and their connection to logic

    Full text link
    This is a tutorial on finite automata. We present the standard material on determinization and minimization, as well as an account of the equivalence of finite automata and monadic second-order logic. We conclude with an introduction to the syntactic monoid, and as an application give a proof of the equivalence of first-order definability and aperiodicity

    On the minimal ranks of matrix pencils and the existence of a best approximate block-term tensor decomposition

    Full text link
    Under the action of the general linear group with tensor structure, the ranks of matrices AA and BB forming an m×nm \times n pencil A+λBA + \lambda B can change, but in a restricted manner. Specifically, with every pencil one can associate a pair of minimal ranks, which is unique up to a permutation. This notion can be defined for matrix pencils and, more generally, also for matrix polynomials of arbitrary degree. In this paper, we provide a formal definition of the minimal ranks, discuss its properties and the natural hierarchy it induces in a pencil space. Then, we show how the minimal ranks of a pencil can be determined from its Kronecker canonical form. For illustration, we classify the orbits according to their minimal ranks (under the action of the general linear group) in the case of real pencils with m,n≤4m, n \le 4. Subsequently, we show that real regular 2k×2k2k \times 2k pencils having only complex-valued eigenvalues, which form an open positive-volume set, do not admit a best approximation (in the norm topology) on the set of real pencils whose minimal ranks are bounded by 2k−12k-1. Our results can be interpreted from a tensor viewpoint, where the minimal ranks of a degree-(d−1)(d-1) matrix polynomial characterize the minimal ranks of matrices constituting a block-term decomposition of an m×n×dm \times n \times d tensor into a sum of matrix-vector tensor products.Comment: This work was supported by the European Research Council under the European Programme FP7/2007-2013, Grant AdG-2013-320594 "DECODA.

    From Finite Automata to Regular Expressions and Back--A Summary on Descriptional Complexity

    Full text link
    The equivalence of finite automata and regular expressions dates back to the seminal paper of Kleene on events in nerve nets and finite automata from 1956. In the present paper we tour a fragment of the literature and summarize results on upper and lower bounds on the conversion of finite automata to regular expressions and vice versa. We also briefly recall the known bounds for the removal of spontaneous transitions (epsilon-transitions) on non-epsilon-free nondeterministic devices. Moreover, we report on recent results on the average case descriptional complexity bounds for the conversion of regular expressions to finite automata and brand new developments on the state elimination algorithm that converts finite automata to regular expressions.Comment: In Proceedings AFL 2014, arXiv:1405.527
    • …
    corecore