1,914 research outputs found

    Rigorous engineering of collective adaptive systems: special section

    Get PDF

    Why Not Be Free: The Black Worldmaking Praxis, Research Method, & Manifesto For Developing Music Interventions Against Stress In Black Youth

    Get PDF
    Why Not Be Free? is an interdisciplinary exploration of music intervention development demonstrating the application of my integrated research and artistic practices through an outlined antiracist method for designing music to reduce stress in Black college youth and a manifesto detailing the compositional process. I draw from Black feminist and womanist thought, music cognition, and public health literature to outline a framework for designing music interventions to reduce stress among Black populations: the Music Medicine Critical Race Praxis. I situate my work among Black speculative artists reimagining experiences in everyday Black life as well as music intervention researchers integrating creative and research practices in the design of music-guided slow-breathing interventions. I synthesize the radical Black worldmaking practices of the artists with scientific evidence to highlight the capacity for music to sustain Black aliveness through the cultivation of altered states of being and collective well-being. The manifesto hones in on the core performance elements of the work--breath and music--to elucidate how breathing sustains Black aliveness and the ongoing movement toward liberatory Black futures by synthesizing perspectives across performance studies and Black worldmaking perspectives. These analyses are juxtaposed with anecdotes and documentation from the compositional process to illuminate the development of The Breathing Suite cosmology from my own everyday Black, lived experiences. Altogether, this thesis outlines the development of my arts intervention praxis, my approach integrating research and composition to develop methods and intermedia performances that foster collective well-being—Black aliveness

    Towards adaptive multi-robot systems: self-organization and self-adaptation

    Get PDF
    Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugÀnglich.This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.The development of complex systems ensembles that operate in uncertain environments is a major challenge. The reason for this is that system designers are not able to fully specify the system during specification and development and before it is being deployed. Natural swarm systems enjoy similar characteristics, yet, being self-adaptive and being able to self-organize, these systems show beneficial emergent behaviour. Similar concepts can be extremely helpful for artificial systems, especially when it comes to multi-robot scenarios, which require such solution in order to be applicable to highly uncertain real world application. In this article, we present a comprehensive overview over state-of-the-art solutions in emergent systems, self-organization, self-adaptation, and robotics. We discuss these approaches in the light of a framework for multi-robot systems and identify similarities, differences missing links and open gaps that have to be addressed in order to make this framework possible

    Methodological Guidelines for Engineering Self-organization and Emergence

    Get PDF
    The ASCENS project deals with the design and development of complex self-adaptive systems, where self-organization is one of the possible means by which to achieve self-adaptation. However, to support the development of self-organising systems, one has to extensively re-situate their engineering from a software architectures and requirements point of view. In particular, in this chapter, we highlight the importance of the decomposition in components to go from the problem to the engineered solution. This leads us to explain and rationalise the following architectural strategy: designing by following the problem organisation. We discuss architectural advantages for development and documentation, and its coherence with existing methodological approaches to self-organisation, and we illustrate the approach with an example on the area of swarm robotics

    Management, Technology and Learning for Individuals, Organisations and Society in Turbulent Environments

    Get PDF
    This book presents the collection of fifty two papers which were presented on the First International Conference on BUSINESS SUSTAINABILITY ’08 - Management, Technology and Learning for Individuals, Organisations and Society in Turbulent Environments, held in Ofir, Portugal, from 25th to 27th of June, 2008. The main motive of the meeting was the growing awareness of the importance of the sustainability issue. This importance had emerged from the growing uncertainty of the market behaviour that leads to the characterization of the market, i.e. environment, as turbulent. Actually, the characterization of the environment as uncertain and turbulent reflects the fact that the traditional technocratic and/or socio-technical approaches cannot effectively and efficiently lead with the present situation. In other words, the rise of the sustainability issue means the quest for new instruments to deal with uncertainty and/or turbulence. The sustainability issue has a complex nature and solutions are sought in a wide range of domains and instruments to achieve and manage it. The domains range from environmental sustainability (referring to natural environment) through organisational and business sustainability towards social sustainability. Concerning the instruments for sustainability, they range from traditional engineering and management methodologies towards “soft” instruments such as knowledge, learning, creativity. The papers in this book address virtually whole sustainability problems space in a greater or lesser extent. However, although the uncertainty and/or turbulence, or in other words the dynamic properties, come from coupling of management, technology, learning, individuals, organisations and society, meaning that everything is at the same time effect and cause, we wanted to put the emphasis on business with the intention to address primarily the companies and their businesses. From this reason, the main title of the book is “Business Sustainability” but with the approach of coupling Management, Technology and Learning for individuals, organisations and society in Turbulent Environments. Concerning the First International Conference on BUSINESS SUSTAINABILITY, its particularity was that it had served primarily as a learning environment in which the papers published in this book were the ground for further individual and collective growth in understanding and perception of sustainability and capacity for building new instruments for business sustainability. In that respect, the methodology of the conference work was basically dialogical, meaning promoting dialog on the papers, but also including formal paper presentations. In this way, the conference presented a rich space for satisfying different authors’ and participants’ needs. Additionally, promoting the widest and global learning environment and participativeness, the Conference Organisation provided the broadcasting over Internet of the Conference sessions, dialogical and formal presentations, for all authors’ and participants’ institutions, as an innovative Conference feature. In these terms, this book could also be understood as a complementary instrument to the Conference authors’ and participants’, but also to the wider readerships’ interested in the sustainability issues. The book brought together 97 authors from 10 countries, namely from Australia, Finland, France, Germany, Ireland, Portugal, Russia, Serbia, Sweden and United Kingdom. The authors “ranged” from senior and renowned scientists to young researchers providing a rich and learning environment. At the end, the editors hope and would like that this book will be useful, meeting the expectation of the authors and wider readership and serving for enhancing the individual and collective learning, and to incentive further scientific development and creation of new papers. Also, the editors would use this opportunity to announce the intention to continue with new editions of the conference and subsequent editions of accompanying books on the subject of BUSINESS SUSTAINABILITY, the second of which is planned for year 2011.info:eu-repo/semantics/publishedVersio

    Consensus-Based Data Management within Fog Computing For the Internet of Things

    Get PDF
    The Internet of Things (IoT) infrastructure forms a gigantic network of interconnected and interacting devices. This infrastructure involves a new generation of service delivery models, more advanced data management and policy schemes, sophisticated data analytics tools, and effective decision making applications. IoT technology brings automation to a new level wherein nodes can communicate and make autonomous decisions in the absence of human interventions. IoT enabled solutions generate and process enormous volumes of heterogeneous data exchanged among billions of nodes. This results in Big Data congestion, data management, storage issues and various inefficiencies. Fog Computing aims at solving the issues with data management as it includes intelligent computational components and storage closer to the data sources. Often, an IoT-enabled infrastructure is shared among many users with various requirements. Sharing resources, sharing operational costs and collective decision making (consensus) among many stakeholders is frequently neglected. This research addresses an essential requirement for adaptive, autonomous and consensus-based Fog computational solutions which are able to support distributed and in-network schemes and policies. These network schemes and policies need to meet the requirements of many users. In this work, innovative consensus-based computational solutions are investigated. These proposed solutions aim to correlate and organise data for effective management and decision making in Fog. Instead of individual decision making, the algorithms aim to aggregate several decisions into a consensus decision representing a collective agreement, benefiting from the individuals variant knowledge and meeting multiple stakeholders requirements. In order to validate the proposed solutions, hybrid research methodology is involved that includes the design of a test-bed and the execution of several experiments. In order to investigate the effectiveness of the paradigm, three experiments were designed and validated. Real-life sensor data and synthetic statistical data was collected, processed and analysed. Bayesian Machine Learning models and Analytics were used to consolidate the design and evaluate the performance of the algorithms. In the Fog environment, the first scenario tests the Aggregation by Distribution algorithm. The solution contribute in achieving a notable efficiency of data delivery obtained with a minimal loss in precision. The second scenario validates the merits of the approach in predicting the activities of high mobility IoT applications. The third scenario tests the applications related to smart home IoT. All proposed Consensus algorithms use statistical analysis to support effective decision making in Fog and enable data aggregation for optimal storage, data transmission, processing and analytics. The final results of all experiments showed that all the implemented consensus approaches surpass the individual ones in different performance terms. Formal results also showed that the paradigm is a good fit in many IoT environments and can be suitable for different scenarios when applying data analysis to correlate data with the design. Finally, the design demonstrates that Fog Computing can compete with Cloud Computing in terms of accuracy with an added preference of locality

    Bio-inspired computation for big data fusion, storage, processing, learning and visualization: state of the art and future directions

    Get PDF
    This overview gravitates on research achievements that have recently emerged from the confluence between Big Data technologies and bio-inspired computation. A manifold of reasons can be identified for the profitable synergy between these two paradigms, all rooted on the adaptability, intelligence and robustness that biologically inspired principles can provide to technologies aimed to manage, retrieve, fuse and process Big Data efficiently. We delve into this research field by first analyzing in depth the existing literature, with a focus on advances reported in the last few years. This prior literature analysis is complemented by an identification of the new trends and open challenges in Big Data that remain unsolved to date, and that can be effectively addressed by bio-inspired algorithms. As a second contribution, this work elaborates on how bio-inspired algorithms need to be adapted for their use in a Big Data context, in which data fusion becomes crucial as a previous step to allow processing and mining several and potentially heterogeneous data sources. This analysis allows exploring and comparing the scope and efficiency of existing approaches across different problems and domains, with the purpose of identifying new potential applications and research niches. Finally, this survey highlights open issues that remain unsolved to date in this research avenue, alongside a prescription of recommendations for future research.This work has received funding support from the Basque Government (Eusko Jaurlaritza) through the Consolidated Research Group MATHMODE (IT1294-19), EMAITEK and ELK ARTEK programs. D. Camacho also acknowledges support from the Spanish Ministry of Science and Education under PID2020-117263GB-100 grant (FightDIS), the Comunidad Autonoma de Madrid under S2018/TCS-4566 grant (CYNAMON), and the CHIST ERA 2017 BDSI PACMEL Project (PCI2019-103623, Spain)

    Engineering Self-Adaptive Collective Processes for Cyber-Physical Ecosystems

    Get PDF
    The pervasiveness of computing and networking is creating significant opportunities for building valuable socio-technical systems. However, the scale, density, heterogeneity, interdependence, and QoS constraints of many target systems pose severe operational and engineering challenges. Beyond individual smart devices, cyber-physical collectives can provide services or solve complex problems by leveraging a “system effect” while coordinating and adapting to context or environment change. Understanding and building systems exhibiting collective intelligence and autonomic capabilities represent a prominent research goal, partly covered, e.g., by the field of collective adaptive systems. Therefore, drawing inspiration from and building on the long-time research activity on coordination, multi-agent systems, autonomic/self-* systems, spatial computing, and especially on the recent aggregate computing paradigm, this thesis investigates concepts, methods, and tools for the engineering of possibly large-scale, heterogeneous ensembles of situated components that should be able to operate, adapt and self-organise in a decentralised fashion. The primary contribution of this thesis consists of four main parts. First, we define and implement an aggregate programming language (ScaFi), internal to the mainstream Scala programming language, for describing collective adaptive behaviour, based on field calculi. Second, we conceive of a “dynamic collective computation” abstraction, also called aggregate process, formalised by an extension to the field calculus, and implemented in ScaFi. Third, we characterise and provide a proof-of-concept implementation of a middleware for aggregate computing that enables the development of aggregate systems according to multiple architectural styles. Fourth, we apply and evaluate aggregate computing techniques to edge computing scenarios, and characterise a design pattern, called Self-organising Coordination Regions (SCR), that supports adjustable, decentralised decision-making and activity in dynamic environments.Con lo sviluppo di informatica e intelligenza artificiale, la diffusione pervasiva di device computazionali e la crescente interconnessione tra elementi fisici e digitali, emergono innumerevoli opportunitĂ  per la costruzione di sistemi socio-tecnici di nuova generazione. Tuttavia, l'ingegneria di tali sistemi presenta notevoli sfide, data la loro complessità—si pensi ai livelli, scale, eterogeneitĂ , e interdipendenze coinvolti. Oltre a dispositivi smart individuali, collettivi cyber-fisici possono fornire servizi o risolvere problemi complessi con un “effetto sistema” che emerge dalla coordinazione e l'adattamento di componenti fra loro, l'ambiente e il contesto. Comprendere e costruire sistemi in grado di esibire intelligenza collettiva e capacitĂ  autonomiche Ăš un importante problema di ricerca studiato, ad esempio, nel campo dei sistemi collettivi adattativi. PerciĂČ, traendo ispirazione e partendo dall'attivitĂ  di ricerca su coordinazione, sistemi multiagente e self-*, modelli di computazione spazio-temporali e, specialmente, sul recente paradigma di programmazione aggregata, questa tesi tratta concetti, metodi, e strumenti per l'ingegneria di ensemble di elementi situati eterogenei che devono essere in grado di lavorare, adattarsi, e auto-organizzarsi in modo decentralizzato. Il contributo di questa tesi consiste in quattro parti principali. In primo luogo, viene definito e implementato un linguaggio di programmazione aggregata (ScaFi), interno al linguaggio Scala, per descrivere comportamenti collettivi e adattativi secondo l'approccio dei campi computazionali. In secondo luogo, si propone e caratterizza l'astrazione di processo aggregato per rappresentare computazioni collettive dinamiche concorrenti, formalizzata come estensione al field calculus e implementata in ScaFi. Inoltre, si analizza e implementa un prototipo di middleware per sistemi aggregati, in grado di supportare piĂč stili architetturali. Infine, si applicano e valutano tecniche di programmazione aggregata in scenari di edge computing, e si propone un pattern, Self-Organising Coordination Regions, per supportare, in modo decentralizzato, attivitĂ  decisionali e di regolazione in ambienti dinamici
    • 

    corecore