170,650 research outputs found

    Abstraction-Based Model Checking of Linear Temporal Properties

    Get PDF
    Even though the expressiveness of linear temporal logic (LTL) supports engineering application, model checking of such properties is a computationally complex task and state space explosion often hinders successful verification. LTL model checking consists of constructing automata from the property and the system, generating the synchronous product of the two automata and checking its language emptiness. We propose a novel LTL model checking algorithm that uses abstraction to tackle the challenge of state space explosion. This algorithm combines the advantages of two commonly used model checking approaches, counterexample-guided abstraction refinement and automata theoretic LTL model checking. The main challenge in combining these is the refinement of "lasso"-shaped counterexamples, for which task we propose a novel refinement strategy based on interpolation

    Management of an intelligent argumentation network for a web-based collaborative engineering design environment

    Get PDF
    Conflict resolution is one of the most challenging tasks in collaborative engineering design. In the previous research, a web-based intelligent collaborative system was developed to address this challenge based on intelligent computational argumentation. However, two important issues were not resolved in that system: priority of participants and self-conflicting arguments. In this thesis, two methods are developed for incorporating priorities of participants into the computational argumentation network: 1) weighted summation and 2) re-assessment of strengths of arguments based on priority of owners of the argument using fuzzy logic inference. In addition, a method for detection of self-conflicting arguments was developed --Abstract, page iii

    Design evaluation of automated manufacturing processes based on complexity of control logic

    Get PDF
    Complexity continues to be a challenge in manufacturing systems, resulting in ever-inflating costs, operational issues and increased lead times to product realisation. Assessing complexity realizes the reduction and management of complexity sources which contributes to lowering associated engineering costs and time, improves productivity and increases profitability. This paper proposes an approach for evaluating the design of automated manufacturing processes based on the structural complexity of the control logic. Six complexity indices are introduced and formulated: Coupling, Restrictiveness, Diameter, Branching, Centralization, and Uncertainty. An overall Logical Complexity Index (CL) which combines all of these indices is developed and demonstrated using a simple pick and place automation process. The results indicate that the proposed approach can help design automation logics with the least complexity and compare alternatives that meet the requirements during initial design stages

    An Authentication Protocol for Future Sensor Networks

    Full text link
    Authentication is one of the essential security services in Wireless Sensor Networks (WSNs) for ensuring secure data sessions. Sensor node authentication ensures the confidentiality and validity of data collected by the sensor node, whereas user authentication guarantees that only legitimate users can access the sensor data. In a mobile WSN, sensor and user nodes move across the network and exchange data with multiple nodes, thus experiencing the authentication process multiple times. The integration of WSNs with Internet of Things (IoT) brings forth a new kind of WSN architecture along with stricter security requirements; for instance, a sensor node or a user node may need to establish multiple concurrent secure data sessions. With concurrent data sessions, the frequency of the re-authentication process increases in proportion to the number of concurrent connections, which makes the security issue even more challenging. The currently available authentication protocols were designed for the autonomous WSN and do not account for the above requirements. In this paper, we present a novel, lightweight and efficient key exchange and authentication protocol suite called the Secure Mobile Sensor Network (SMSN) Authentication Protocol. In the SMSN a mobile node goes through an initial authentication procedure and receives a re-authentication ticket from the base station. Later a mobile node can use this re-authentication ticket when establishing multiple data exchange sessions and/or when moving across the network. This scheme reduces the communication and computational complexity of the authentication process. We proved the strength of our protocol with rigorous security analysis and simulated the SMSN and previously proposed schemes in an automated protocol verifier tool. Finally, we compared the computational complexity and communication cost against well-known authentication protocols.Comment: This article is accepted for the publication in "Sensors" journal. 29 pages, 15 figure

    What is Computational Intelligence and where is it going?

    Get PDF
    What is Computational Intelligence (CI) and what are its relations with Artificial Intelligence (AI)? A brief survey of the scope of CI journals and books with ``computational intelligence'' in their title shows that at present it is an umbrella for three core technologies (neural, fuzzy and evolutionary), their applications, and selected fashionable pattern recognition methods. At present CI has no comprehensive foundations and is more a bag of tricks than a solid branch of science. The change of focus from methods to challenging problems is advocated, with CI defined as a part of computer and engineering sciences devoted to solution of non-algoritmizable problems. In this view AI is a part of CI focused on problems related to higher cognitive functions, while the rest of the CI community works on problems related to perception and control, or lower cognitive functions. Grand challenges on both sides of this spectrum are addressed
    • …
    corecore