2,389 research outputs found

    Inference in classifier systems

    Get PDF
    Classifier systems (Css) provide a rich framework for learning and induction, and they have beenı successfully applied in the artificial intelligence literature for some time. In this paper, both theı architecture and the inferential mechanisms in general CSs are reviewed, and a number of limitations and extensions of the basic approach are summarized. A system based on the CS approach that is capable of quantitative data analysis is outlined and some of its peculiarities discussed

    On the automated extraction of regression knowledge from databases

    Get PDF
    The advent of inexpensive, powerful computing systems, together with the increasing amount of available data, conforms one of the greatest challenges for next-century information science. Since it is apparent that much future analysis will be done automatically, a good deal of attention has been paid recently to the implementation of ideas and/or the adaptation of systems originally developed in machine learning and other computer science areas. This interest seems to stem from both the suspicion that traditional techniques are not well-suited for large-scale automation and the success of new algorithmic concepts in difficult optimization problems. In this paper, I discuss a number of issues concerning the automated extraction of regression knowledge from databases. By regression knowledge is meant quantitative knowledge about the relationship between a vector of predictors or independent variables (x) and a scalar response or dependent variable (y). A number of difficulties found in some well-known tools are pointed out, and a flexible framework avoiding many such difficulties is described and advocated. Basic features of a new tool pursuing this direction are reviewed

    PASS: a simple classifier system for data analysis

    Get PDF
    Let x be a vector of predictors and y a scalar response associated with it. Consider the regression problem of inferring the relantionship between predictors and response on the basis of a sample of observed pairs (x,y). This is a familiar problem for which a variety of methods are available. This paper describes a new method based on the classifier system approach to problem solving. Classifier systems provide a rich framework for learning and induction, and they have been suc:cessfully applied in the artificial intelligence literature for some time. The present method emiches the simplest classifier system architecture with some new heuristic and explores its potential in a purely inferential context. A prototype called PASS (Predictive Adaptative Sequential System) has been built to test these ideas empirically. Preliminary Monte Carlo experiments indicate that PASS is able to discover the structure imposed on the data in a wide array of cases

    Probabilistic and fuzzy reasoning in simple learning classifier systems

    Get PDF
    This paper is concerned with the general stimulus-response problem as addressed by a variety of simple learning c1assifier systems (CSs). We suggest a theoretical model from which the assessment of uncertainty emerges as primary concern. A number of representation schemes borrowing from fuzzy logic theory are reviewed, and sorne connections with a well-known neural architecture revisited. In pursuit of the uncertainty measuring goal, usage of explicit probability distributions in the action part of c1assifiers is advocated. Sorne ideas supporting the design of a hybrid system incorpo'rating bayesian learning on top of the CS basic algorithm are sketched

    Fitness Proportionate Niching: Harnessing The Power Of Evolutionary Algorithms For Evolving Cooperative Populations And Dynamic Clustering

    Get PDF
    Evolutionary algorithms work on the notion of best fit will survive criteria. This makes evolving a cooperative and diverse population in a competing environment via evolutionary algorithms a challenging task. Analogies to species interactions in natural ecological systems have been used to develop methods for maintaining diversity in a population. One such area that mimics species interactions in natural systems is the use of niching. Niching methods extend the application of EAs to areas that seeks to embrace multiple solutions to a given problem. The conventional fitness sharing technique has limitations when the multimodal fitness landscape has unequal peaks. Higher peaks are strong population attractors. And this technique suffers from the curse of population size in attempting to discover all optimum points. The use of high population size makes the technique computationally complex, especially when there is a big jump in fitness values of the peaks. This work introduces a novel bio-inspired niching technique, termed Fitness Proportionate Niching (FPN), based on the analogy of finite resource model where individuals share the resource of a niche in proportion to their actual fitness. FPN makes the search algorithm unbiased to the variation in fitness values of the peaks and hence mitigates the drawbacks of conventional fitness sharing. FPN extends the global search ability of Genetic Algorithms (GAs) for evolving hierarchical cooperation in genetics-based machine learning and dynamic clustering. To this end, this work introduces FPN based resource sharing which leads to the formation of a viable default hierarchy in classifiers for the first time. It results in the co-evolution of default and exception rules, which lead to a robust and concise model description. The work also explores the feasibility and success of FPN for dynamic clustering. Unlike most other clustering techniques, FPN based clustering does not require any a priori information on the distribution of the data

    MILCS: A mutual information learning classifier system

    Get PDF
    This paper introduces a new variety of learning classifier system (LCS), called MILCS, which utilizes mutual information as fitness feedback. Unlike most LCSs, MILCS is specifically designed for supervised learning. MILCS's design draws on an analogy to the structural learning approach of cascade correlation networks. We present preliminary results, and contrast them to results from XCS. We discuss the explanatory power of the resulting rule sets, and introduce a new technique for visualizing explanatory power. Final comments include future directions for this research, including investigations in neural networks and other systems. Copyright 2007 ACM
    • …
    corecore