6,140 research outputs found

    On the Spectrum of the Derangement Graph

    Get PDF
    We derive several interesting formulae for the eigenvalues of the derangement graph and use them to settle affirmatively a conjecture of Ku regarding the least eigenvalue

    Ascent Sequences Avoiding Pairs of Patterns

    Get PDF
    Ascent sequences were introduced by Bousquet-Melou et al. in connection with (2+2)-avoiding posets and their pattern avoidance properties were first considered by Duncan and Steingrímsson. In this paper, we consider ascent sequences of length n role= presentation style= display: inline; font-size: 11.2px; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; font-family: Verdana, Arial, Helvetica, sans-serif; position: relative; \u3enn avoiding two patterns of length 3, and we determine an exact enumeration for 16 different pairs of patterns. Methods include simple recurrences, bijections to other combinatorial objects (including Dyck paths and pattern-avoiding permutations), and generating trees. We also provide an analogue of the Erdős-Szekeres Theorem to prove that any sufficiently long ascent sequence contains either many copies of the same number or a long increasing subsequence, with a precise bound

    The enumeration of three pattern classes using monotone grid classes

    Get PDF
    The structure of the three pattern classes defined by the sets of forbidden permutations \{2143,4321\}, \{2143,4312\} and \{1324,4312\} is determined using the machinery of monotone grid classes. This allows the permutations in these classes to be described in terms of simple diagrams and regular languages and, using this, the rational generating functions which enumerate these classes are determined

    Lattic path proofs of extended Bressoud-Wei and Koike skew Schur function identities

    Get PDF
    Our recent paper provides extensions to two classical determinantal results of Bressoud and Wei, and of Koike. The proofs in that paper were algebraic. The present paper contains combinatorial lattice path proofs
    • …
    corecore