11,716 research outputs found

    A Discontinuity in the Distribution of Fixed Point Sums

    Full text link
    The quantity f(n,r)f(n,r), defined as the number of permutations of the set [n]={1,2,...n}[n]=\{1,2,... n\} whose fixed points sum to rr, shows a sharp discontinuity in the neighborhood of r=nr=n. We explain this discontinuity and study the possible existence of other discontinuities in f(n,r)f(n,r) for permutations. We generalize our results to other families of structures that exhibit the same kind of discontinuities, by studying f(n,r)f(n,r) when ``fixed points'' is replaced by ``components of size 1'' in a suitable graph of the structure. Among the objects considered are permutations, all functions and set partitions.Comment: 1 figur

    Motzkin paths, Motzkin polynomials and recurrence relations

    Get PDF
    We consider the Motzkin paths which are simple combinatorial objects appearing in many contexts. They are counted by the Motzkin numbers, related to the well known Catalan numbers. Associated with the Motzkin paths, we introduce the Motzkin polynomial, which is a multi-variable polynomial "counting" all Motzkin paths of a certain type. Motzkin polynomials (also called Jacobi-Rogers polynomials) have been studied before, but here we deduce sonic properties based on recurrence relations. The recurrence relations proved here also allow an efficient computation of the Motzkin polynomials. Finally, we show that the matrix entries of powers of an arbitrary tridiagonal matrix are essentially given by Motzkin polynomials, a property commonly known but usually stated without proof

    On the Spectrum of the Derangement Graph

    Get PDF
    We derive several interesting formulae for the eigenvalues of the derangement graph and use them to settle affirmatively a conjecture of Ku regarding the least eigenvalue

    Why Delannoy numbers?

    Full text link
    This article is not a research paper, but a little note on the history of combinatorics: We present here a tentative short biography of Henri Delannoy, and a survey of his most notable works. This answers to the question raised in the title, as these works are related to lattice paths enumeration, to the so-called Delannoy numbers, and were the first general way to solve Ballot-like problems. These numbers appear in probabilistic game theory, alignments of DNA sequences, tiling problems, temporal representation models, analysis of algorithms and combinatorial structures.Comment: Presented to the conference "Lattice Paths Combinatorics and Discrete Distributions" (Athens, June 5-7, 2002) and to appear in the Journal of Statistical Planning and Inference

    Ascent Sequences Avoiding Pairs of Patterns

    Get PDF
    Ascent sequences were introduced by Bousquet-Melou et al. in connection with (2+2)-avoiding posets and their pattern avoidance properties were first considered by Duncan and Steingrímsson. In this paper, we consider ascent sequences of length n role= presentation style= display: inline; font-size: 11.2px; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; font-family: Verdana, Arial, Helvetica, sans-serif; position: relative; \u3enn avoiding two patterns of length 3, and we determine an exact enumeration for 16 different pairs of patterns. Methods include simple recurrences, bijections to other combinatorial objects (including Dyck paths and pattern-avoiding permutations), and generating trees. We also provide an analogue of the Erdős-Szekeres Theorem to prove that any sufficiently long ascent sequence contains either many copies of the same number or a long increasing subsequence, with a precise bound
    • …
    corecore