11,329 research outputs found

    The VOLNA code for the numerical modelling of tsunami waves: generation, propagation and inundation

    Get PDF
    A novel tool for tsunami wave modelling is presented. This tool has the potential of being used for operational purposes: indeed, the numerical code \VOLNA is able to handle the complete life-cycle of a tsunami (generation, propagation and run-up along the coast). The algorithm works on unstructured triangular meshes and thus can be run in arbitrary complex domains. This paper contains the detailed description of the finite volume scheme implemented in the code. The numerical treatment of the wet/dry transition is explained. This point is crucial for accurate run-up/run-down computations. Most existing tsunami codes use semi-empirical techniques at this stage, which are not always sufficient for tsunami hazard mitigation. Indeed the decision to evacuate inhabitants is based on inundation maps which are produced with this type of numerical tools. We present several realistic test cases that partially validate our algorithm. Comparisons with analytical solutions and experimental data are performed. Finally the main conclusions are outlined and the perspectives for future research presented.Comment: 47 pages, 27 figures. Other author's papers can be downloaded at http://www.lama.univ-savoie.fr/~dutykh

    Arbitrary-Lagrangian-Eulerian discontinuous Galerkin schemes with a posteriori subcell finite volume limiting on moving unstructured meshes

    Get PDF
    We present a new family of high order accurate fully discrete one-step Discontinuous Galerkin (DG) finite element schemes on moving unstructured meshes for the solution of nonlinear hyperbolic PDE in multiple space dimensions, which may also include parabolic terms in order to model dissipative transport processes. High order piecewise polynomials are adopted to represent the discrete solution at each time level and within each spatial control volume of the computational grid, while high order of accuracy in time is achieved by the ADER approach. In our algorithm the spatial mesh configuration can be defined in two different ways: either by an isoparametric approach that generates curved control volumes, or by a piecewise linear decomposition of each spatial control volume into simplex sub-elements. Our numerical method belongs to the category of direct Arbitrary-Lagrangian-Eulerian (ALE) schemes, where a space-time conservation formulation of the governing PDE system is considered and which already takes into account the new grid geometry directly during the computation of the numerical fluxes. Our new Lagrangian-type DG scheme adopts the novel a posteriori sub-cell finite volume limiter method, in which the validity of the candidate solution produced in each cell by an unlimited ADER-DG scheme is verified against a set of physical and numerical detection criteria. Those cells which do not satisfy all of the above criteria are flagged as troubled cells and are recomputed with a second order TVD finite volume scheme. The numerical convergence rates of the new ALE ADER-DG schemes are studied up to fourth order in space and time and several test problems are simulated. Finally, an application inspired by Inertial Confinement Fusion (ICF) type flows is considered by solving the Euler equations and the PDE of viscous and resistive magnetohydrodynamics (VRMHD).Comment: 39 pages, 21 figure

    A Comparison Study of Two Methods for Elliptic Boundary Value Problems

    Full text link
    In this paper, we perform a comparison study of two methods (the embedded boundary method and several versions of the mixed finite element method) to solve an elliptic boundary value problem

    Three-dimensional CFD simulations with large displacement of the geometries using a connectivity-change moving mesh approach

    Get PDF
    This paper deals with three-dimensional (3D) numerical simulations involving 3D moving geometries with large displacements on unstructured meshes. Such simulations are of great value to industry, but remain very time-consuming. A robust moving mesh algorithm coupling an elasticity-like mesh deformation solution and mesh optimizations was proposed in previous works, which removes the need for global remeshing when performing large displacements. The optimizations, and in particular generalized edge/face swapping, preserve the initial quality of the mesh throughout the simulation. We propose to integrate an Arbitrary Lagrangian Eulerian compressible flow solver into this process to demonstrate its capabilities in a full CFD computation context. This solver relies on a local enforcement of the discrete geometric conservation law to preserve the order of accuracy of the time integration. The displacement of the geometries is either imposed, or driven by fluid–structure interaction (FSI). In the latter case, the six degrees of freedom approach for rigid bodies is considered. Finally, several 3D imposed-motion and FSI examples are given to validate the proposed approach, both in academic and industrial configurations

    Implementation and assessment of two density-based outlier detection methods over large spatial point clouds

    Get PDF
    Several technologies provide datasets consisting of a large number of spatial points, commonly referred to as point-clouds. These point datasets provide spatial information regarding the phenomenon that is to be investigated, adding value through knowledge of forms and spatial relationships. Accurate methods for automatic outlier detection is a key step. In this note we use a completely open-source workflow to assess two outlier detection methods, statistical outlier removal (SOR) filter and local outlier factor (LOF) filter. The latter was implemented ex-novo for this work using the Point Cloud Library (PCL) environment. Source code is available in a GitHub repository for inclusion in PCL builds. Two very different spatial point datasets are used for accuracy assessment. One is obtained from dense image matching of a photogrammetric survey (SfM) and the other from floating car data (FCD) coming from a smart-city mobility framework providing a position every second of two public transportation bus tracks. Outliers were simulated in the SfM dataset, and manually detected and selected in the FCD dataset. Simulation in SfM was carried out in order to create a controlled set with two classes of outliers: clustered points (up to 30 points per cluster) and isolated points, in both cases at random distances from the other points. Optimal number of nearest neighbours (KNN) and optimal thresholds of SOR and LOF values were defined using area under the curve (AUC) of the receiver operating characteristic (ROC) curve. Absolute differences from median values of LOF and SOR (defined as LOF2 and SOR2) were also tested as metrics for detecting outliers, and optimal thresholds defined through AUC of ROC curves. Results show a strong dependency on the point distribution in the dataset and in the local density fluctuations. In SfM dataset the LOF2 and SOR2 methods performed best, with an optimal KNN value of 60; LOF2 approach gave a slightly better result if considering clustered outliers (true positive rate: LOF2\u2009=\u200959.7% SOR2\u2009=\u200953%). For FCD, SOR with low KNN values performed better for one of the two bus tracks, and LOF with high KNN values for the other; these differences are due to very different local point density. We conclude that choice of outlier detection algorithm very much depends on characteristic of the dataset\u2019s point distribution, no one-solution-fits-all. Conclusions provide some information of what characteristics of the datasets can help to choose the optimal method and KNN values

    Computational Aerodynamics on unstructed meshes

    Get PDF
    New 2D and 3D unstructured-grid based flow solvers have been developed for simulating steady compressible flows for aerodynamic applications. The codes employ the full compressible Euler/Navier-Stokes equations. The Spalart-Al Imaras one equation turbulence model is used to model turbulence effects of flows. The spatial discretisation has been obtained using a cell-centred finite volume scheme on unstructured-grids, consisting of triangles in 2D and of tetrahedral and prismatic elements in 3D. The temporal discretisation has been obtained with an explicit multistage Runge-Kutta scheme. An "inflation" mesh generation technique is introduced to effectively reduce the difficulty in generating highly stretched 2D/3D viscous grids in regions near solid surfaces. The explicit flow method is accelerated by the use of a multigrid method with consideration of the high grid aspect ratio in viscous flow simulations. A solution mesh adaptation technique is incorporated to improve the overall accuracy of the 2D inviscid and viscous flow solutions. The 3D flow solvers are parallelised in a MIMD fashion aimed at a PC cluster system to reduce the computing time for aerodynamic applications. The numerical methods are first applied to several 2D inviscid flow cases, including subsonic flow in a bump channel, transonic flow around a NACA0012 airfoil and transonic flow around the RAE 2822 airfoil to validate the numerical algorithms. The rest of the 2D case studies concentrate on viscous flow simulations including laminar/turbulent flow over a flat plate, transonic turbulent flow over the RAE 2822 airfoil, and low speed turbulent flows in a turbine cascade with massive separations. The results are compared to experimental data to assess the accuracy of the method. The over resolved problem with mesh adaptation on viscous flow simulations is addressed with a two phase mesh reconstruction procedure. The solution convergence rate with the aspect ratio adaptive multigrid method and the direct connectivity based multigrid is assessed in several viscous turbulent flow simulations. Several 3D test cases are presented to validate the numerical algorithms for solving Euler/Navier-Stokes equations. Inviscid flow around the M6 wing airfoil is simulated on the tetrahedron based 3D flow solver with an upwind scheme and spatial second order finite volume method. The efficiency of the multigrid for inviscid flow simulations is examined. The efficiency of the parallelised 3D flow solver and the PC cluster system is assessed with simulations of the same case with different partitioning schemes. The present parallelised 3D flow solvers on the PC cluster system show satisfactory parallel computing performance. Turbulent flows over a flat plate are simulated with the tetrahedron based and prismatic based flow solver to validate the viscous term treatment. Next, simulation of turbulent flow over the M6 wing is carried out with the parallelised 3D flow solvers to demonstrate the overall accuracy of the algorithms and the efficiency of the multigrid method. The results show very good agreement with experimental data. A highly stretched and well-formed computational grid near the solid wall and wake regions is generated with the "inflation" method. The aspect ratio adaptive multigrid displayed a good acceleration rate. Finally, low speed flow around the NREL Phase 11 Wind turbine is simulated and the results are compared to the experimental data
    corecore