344,005 research outputs found

    Non-cooperative power control for energy-efficient and delay-aware wireless networks

    Get PDF
    This work aims at developing a distributed power control algorithm for energy efficiency maximization (measured in bit/Joule) in wireless networks. Unlike most previous works, a new formulation is proposed to jointly account for the energy efficiency and communication delay while ensuring quality-of-service constraints. A non-cooperative game-theoretic approach is taken, and feasibility conditions are derived for the best-response of the game. Under the assumption that these conditions are met, it is shown that the game admits a unique Nash equilibrium, which is guaranteed to be reached by implementing the game best-response dynamics. Based on these results, a convergent power control algorithm is derived, which can be implemented in a fully decentralized fashion

    Power Allocation Games in Interference Relay Channels: Existence Analysis of Nash Equilibria

    No full text
    International audienceWe consider a network composed of two interfering point-to-point links where the two transmitters can exploit one common relay node to improve their individual transmission rate. Communications are assumed to be multiband, and transmitters are assumed to selfishly allocate their resources to optimize their individual transmission rate. The main objective of this paper is to show that this conflicting situation (modeled by a non-cooperative game) has some stable outcomes, namely, Nash equilibria. This result is proved for three different types of relaying protocols: decode and-forward, estimate-and-forward, and amplify-and-forward. We provide additional results on the problems of uniqueness, efficiency of the equilibrium, and convergence of a best-response-based dynamics to the equilibrium. These issues are analyzed in a special case of the amplify-and-forward protocol and illustrated by simulations in general
    corecore