206 research outputs found

    Traditional Instruction Versus Virtual Reality Simulation: A Comparative Study of Phlebotomy Training among Nursing Students in Kuwait

    Get PDF
    This quasi-experimental study compared differences in phlebotomy performance on a live client, between a control group taught through the traditional method and an experimental group using virtual reality simulation. The study showed both groups had performed successfully, using the following metrics: number of reinsertions, pain factor, hematoma status, duration of tourniquet application, time to complete the procedure, and successful completion of procedure. Utilizing t-test in comparing the control and experimental groups, no performance metric was found to be significant. Total time to complete the procedure for both groups had the lowest p value, but was of no significance. Both methods for phlebotomy training were found to be equally effective. Nurse educators are challenged  to recognize the advantages and limitations of both methods to pave their way in an enhanced quality phlebotomy program. Keywords: Traditional method, Virtual reality simulation, Phlebotomy, Performance metrics 

    Digital Game-Based Support for Learning the Phlebotomy Procedure in the Biomedical Laboratory Scientist Education

    Get PDF
    Practice-based training in education is important, expensive, and resource-demanding. Digital games can provide complementary training opportunities for practicing procedural skills and increase the value of the limited laboratory training time in biomedical laboratory science (BLS) education. This paper presents how a serious game can be integrated in a BLS course and supplement traditional learning and teaching with accessible learning material for phlebotomy. To gather information on challenges relevant to integrating Digital Game-Based Learning (DGBL), a case was carried out using mixed methods. Through a semester-long study, following a longitudinal, interventional cohort study, data and information were obtained from teachers and students about the learning impact of the current application. The game motivated students to train more, and teachers were positive towards using it in education. The results provide increased insights into how DGBL can be integrated into education and give rise to a discussion of the current challenges of DGBL for practice-based learning.Digital Game-Based Support for Learning the Phlebotomy Procedure in the Biomedical Laboratory Scientist EducationpublishedVersio

    Upskilling health and care workers with augmented and virtual reality: protocol for a realist review to develop an evidence-informed programme theory.

    Get PDF
    From Europe PMC via Jisc Publications RouterHistory: ppub 2021-07-01, epub 2021-07-05Publication status: PublishedIntroductionAugmented reality (AR) and virtual reality (VR) are increasingly used to upskill health and care providers, including in surgical, nursing and acute care settings. Many studies have used AR/VR to deliver training, providing mixed evidence on their effectiveness and limited evidence regarding contextual factors that influence effectiveness and implementation. This review will develop, test and refine an evidence-informed programme theory on what facilitates or constrains the implementation of AR or VR programmes in health and care settings and understand how, for whom and to what extent they 'work'.Methods and analysisThis realist review adheres to the Realist And Meta-narrative Evidence Syntheses: Evolving Standards (RAMESES) standards and will be conducted in three steps: theory elicitation, theory testing and theory refinement. First, a search will identify practitioner, academic and learning and technology adoption theories from databases (MEDLINE, Scopus, CINAHL, Embase, Education Resources Information Center, PsycINFO and Web of Science), practitioner journals, snowballing and grey literature. Information regarding contexts, mechanisms and outcomes will be extracted. A narrative synthesis will determine overlapping configurations and form an initial theory. Second, the theory will be tested using empirical evidence located from the above databases and identified from the first search. Quality will be assessed using the Mixed Methods Appraisal Tool (MMAT), and relevant information will be extracted into a coding sheet. Third, the extracted information will be compared with the initial programme theory, with differences helping to make refinements. Findings will be presented as a narrative summary, and the MMAT will determine our confidence in each configuration.Ethics and disseminationEthics approval is not required. This review will develop an evidence-informed programme theory. The results will inform and support AR/VR interventions from clinical educators, healthcare providers and software developers. Upskilling through AR/VR learning interventions may improve quality of care and promote evidence-based practice and continued learning. Findings will be disseminated through conference presentations and peer-reviewed journal articles

    Use of Simulation to Reinforce Evidence-based Collection Processes

    Get PDF
    Proper collection of blood cultures is needed to identify pathogens causing serious infections and direct appropriate antibiotic therapy. Blood culture contamination can lead to longer hospital stays, incorrect antibiotic treatment, additional testing, and overall increased costs for the patient and hospital. Blood culture collection technique is the most important factor affecting contamination rates. The purpose of this project was to determine the effect of simulation reinforcement of blood culture collection processes on the rate of contamination of blood cultures drawn by nurses in a community medical center emergency department. This one-group before-and-after cohort study utilized a convenience sample of 50 nurses who collect blood cultures on adult clients. Each participant completed a pretest, attended a simulation in-service class, and completed a posttest immediately after the simulation and again one-month later. There was significant knowledge gained from pretest to immediate posttest, with no significant decrease in knowledge at I-month post-intervention. The 3-month blood culture contamination rate was 3.26% prior to the intervention, 4% during the intervention period, 3.7% after the intervention, and 2% in months 4 aI1d 5 postintervention. The use of simulation in the professional development of practicing nurses has the potential to improve clinical practice performance and patient outcomes

    Effects of a simulation-based workshop on nursing students' competence in arterial puncture

    Get PDF
    Objective: To evaluate whether a short simulation-based workshop in radial artery puncture would improve nursing students’ competence to a level in which they could practise the procedure on a live patient without compromising his safety. Methods: Quasi-experimental one-group pretest-posttest study with 111 third-year nursing students. A 1.5-hour simulation-based workshop was implemented. This included a video-lecture, live demonstrations, selfdirected simulated practice in dyads and individual intermittent feedback. Participants’ skills, knowledge and self-efficacy in arterial puncture were measured before and after attending the workshop. Results: After the intervention, a total of 61.1% of the participants showed the level of competence required to safely practice radial artery puncture on a live patient under supervision. Conclusion: Effective simulation-based training in arterial puncture for nursing students does not necessarily need to be resource-intensive. Well-planned, evidence-based training sessions using low-tech simulators could help educators to achieve good educational outcomes and promote patient safety

    Effects of a simulation-based workshop on nursing students' competence in arterial puncture

    Get PDF
    Objective: To evaluate whether a short simulation-based workshop in radial artery puncture would improve nursing students’ competence to a level in which they could practise the procedure on a live patient without compromising his safety. Methods: Quasi-experimental one-group pretest-posttest study with 111 third-year nursing students. A 1.5-hour simulation-based workshop was implemented. This included a video-lecture, live demonstrations, selfdirected simulated practice in dyads and individual intermittent feedback. Participants’ skills, knowledge and self-efficacy in arterial puncture were measured before and after attending the workshop. Results: After the intervention, a total of 61.1% of the participants showed the level of competence required to safely practice radial artery puncture on a live patient under supervision. Conclusion: Effective simulation-based training in arterial puncture for nursing students does not necessarily need to be resource-intensive. Well-planned, evidence-based training sessions using low-tech simulators could help educators to achieve good educational outcomes and promote patient safety

    Development and Validation of a Hybrid Virtual/Physical Nuss Procedure Surgical Trainer

    Get PDF
    With continuous advancements and adoption of minimally invasive surgery, proficiency with nontrivial surgical skills involved is becoming a greater concern. Consequently, the use of surgical simulation has been increasingly embraced by many for training and skill transfer purposes. Some systems utilize haptic feedback within a high-fidelity anatomically-correct virtual environment whereas others use manikins, synthetic components, or box trainers to mimic primary components of a corresponding procedure. Surgical simulation development for some minimally invasive procedures is still, however, suboptimal or otherwise embryonic. This is true for the Nuss procedure, which is a minimally invasive surgery for correcting pectus excavatum (PE) – a congenital chest wall deformity. This work aims to address this gap by exploring the challenges of developing both a purely virtual and a purely physical simulation platform of the Nuss procedure and their implications in a training context. This work then describes the development of a hybrid mixed-reality system that integrates virtual and physical constituents as well as an augmentation of the haptic interface, to carry out a reproduction of the primary steps of the Nuss procedure and satisfy clinically relevant prerequisites for its training platform. Furthermore, this work carries out a user study to investigate the system’s face, content, and construct validity to establish its faithfulness as a training platform

    Technology-enhanced learning and proficiency based progression to investigate and mitigate ‘wrong blood in tube (WBIT)s’ in our hospitals; can we improve patient safety and reduce resource wastage?

    Get PDF
    Background: Blood sampling errors are a frequent occurrence in healthcare. Wrong Blood in Tube (WBIT) errors are a serious blood sampling error that occur when the blood in the tube is not that of the person on the tube label. WBIT can lead to serious consequences including ABO incompatible blood transfusion with a risk of mortality, inappropriate diagnosis and inappropriate treatment of patients. Blood sampling errors are recognised globally. In Cork University Hospital (CUH), to maintain INAB accreditation at the laboratory, tracking and trending of blood sampling errors including WBIT is required. Since 2010, a steady incidence of WBIT errors was identified with a peak in incidence with the intake of new doctors to the hospital each July. Teaching by the medical school on phlebotomy, awareness campaigns and efforts by the haemovigilance team in the hospital failed to reduce the incidence of WBIT at CUH. Aim: The aim of this study is to develop a novel proficiency-based progression (PBP) training programme in phlebotomy, specific for CUH to reduce the incidence of blood sampling errors, especially WBIT. Objective: 1. Engage with stakeholders in the process of phlebotomy at CUH and with experts in the field of PBP to develop metrics to define the procedure of phlebotomy at CUH. 2. Develop a PBP training programme in phlebotomy, specifically for interns commencing work in the hospital consisting of 1) Online module 2) Face-to-face training on a simulated ward 3) Mentorship of the doctors performing phlebotomy on real patients according to the metric. 3. Perform a controlled clinical trial to determine if the introduction of the training programme resulted in a reduction in blood sampling errors including WBITs in comparison to blood sampling errors in a retrospective control group in 2016 before the study commenced. 4. An observational study took place on the wards to identify the barriers and facilitators to implementation of the instructions provided in the metric. Findings: A validated metric for performing phlebotomy at CUH was developed and used to develop a PBP training programme in phlebotomy. In the haematology laboratory, 43 interns in 2016 control group had an error rate of 2.4% compared to 44 interns in the 2017 pilot study, who had an error rate of 1.2% (OR=0.50, 95% CI 0.36-0.70 p-value<0.01). 46 interns in the 2018 follow-on group had an error rate 1.9% (OR=0.89, 95% CI 0.65-1.21 p-value=0.46). There were three WBITs in 2016 and 2017 and five WBITs in 2018. In the transfusion laboratory, there was a reduction in overall error rates with the introduction PBP training, but the reduction was not statistically significant. There was no blood transfusion WBIT in 2016, there was one blood transfusion WBIT in 2017, and no blood transfusion WBIT in 2018. During observations of interns performing phlebotomy on the wards, phlebotomy was found to take a median of 20 minutes (minimum 10 minutes, maximum 45 minutes). There were often poor practices promoted by difficulty locating patients, task disturbance, poor requesting practices acting as a barrier to positive patient identification, patients not wearing wristbands to identify them, and environmental factors such as stress and lack of safety culture. Conclusion: The effect of the PBP training programme in phlebotomy on the primary outcome WBIT was difficult to determine due to the rare occurrence of WBIT. There was not sufficient sample size to reach a statistically significant conclusion. Blood sampling errors appeared to be improving, but the effect size was smaller in the second year of the study possibly due to a reduction in the number of tutors available per group on the simulation ward and confounding. Observation of phlebotomy on the wards identified numerous barriers to key elements including positive patient identification, poor access to essential equipment and task prioritisation by busy doctors. Introducing bedside label printers and promoting a culture of safety are critical factors to improve the safety and reduce WBIT errors

    Towards a Low-Cost Mobile Subcutaneous Vein Detection Solution Using Near-Infrared Spectroscopy

    Get PDF
    Excessive venipunctures are both time- and resource-consuming events, which cause anxiety, pain, and distress in patients, or can lead to severe harmful injuries. We propose a low-cost mobile health solution for subcutaneous vein detection using near-infrared spectroscopy, along with an assessment of the current state of the art in this field. The first objective of this study was to get a deeper overview of the research topic, through the initial team discussions and a detailed literature review (using both academic and grey literature). The second objective, that is, identifying the commercial systems employing near-infrared spectroscopy, was conducted using the PubMed database. The goal of the third objective was to identify and evaluate (using the IEEE Xplore database) the research efforts in the field of low-cost near-infrared imaging in general, as a basis for the conceptual model of the upcoming prototype. Although the reviewed commercial devices have demonstrated usefulness and value for peripheral veins visualization, other evaluated clinical outcomes are less conclusive. Previous studies regarding low-cost near-infrared systems demonstrated the general feasibility of developing cost-effective vein detection systems; however, their limitations are restricting their applicability to clinical practice. Finally, based on the current findings, we outline the future research direction
    • …
    corecore