195 research outputs found

    Remote sensing the vertical profile of cloud droplet effective radius, thermodynamic phase, and temperature

    Get PDF
    Cloud-aerosol interaction is a key issue in the climate system, affecting the water cycle, the weather, and the total energy balance including the spatial and temporal distribution of latent heat release. Information on the vertical distribution of cloud droplet microphysics and thermodynamic phase as a function of temperature or height, can be correlated with details of the aerosol field to provide insight on how these particles are affecting cloud properties and their consequences to cloud lifetime, precipitation, water cycle, and general energy balance. Unfortunately, today's experimental methods still lack the observational tools that can characterize the true evolution of the cloud microphysical, spatial and temporal structure in the cloud droplet scale, and then link these characteristics to environmental factors and properties of the cloud condensation nuclei. <br><br> Here we propose and demonstrate a new experimental approach (the cloud scanner instrument) that provides the microphysical information missed in current experiments and remote sensing options. Cloud scanner measurements can be performed from aircraft, ground, or satellite by scanning the side of the clouds from the base to the top, providing us with the unique opportunity of obtaining snapshots of the cloud droplet microphysical and thermodynamic states as a function of height and brightness temperature in clouds at several development stages. The brightness temperature profile of the cloud side can be directly associated with the thermodynamic phase of the droplets to provide information on the glaciation temperature as a function of different ambient conditions, aerosol concentration, and type. An aircraft prototype of the cloud scanner was built and flew in a field campaign in Brazil. <br><br> The CLAIM-3D (3-Dimensional Cloud Aerosol Interaction Mission) satellite concept proposed here combines several techniques to simultaneously measure the vertical profile of cloud microphysics, thermodynamic phase, brightness temperature, and aerosol amount and type in the neighborhood of the clouds. The wide wavelength range, and the use of multi-angle polarization measurements proposed for this mission allow us to estimate the availability and characteristics of aerosol particles acting as cloud condensation nuclei, and their effects on the cloud microphysical structure. These results can provide unprecedented details on the response of cloud droplet microphysics to natural and anthropogenic aerosols in the size scale where the interaction really happens

    Retrieval of Optical and Microphysical Cloud Properties Using Ship-based Spectral Solar Radiation Measurements over the Atlantic Ocean

    Get PDF
    In this thesis spectral solar zenith radiances are analyzed which were obtained from ship-based measurements over the Atlantic ocean. In combination with high-resolution lidar and microwave remote sensing optical and microphysical cloud properties were retrieved using spectral radiation data. To overcome problems of existing transmissivity-based cloud retrievals, a new retrieval algorithm is introduced which circumvents retrieval ambiguities and reduces the influence of measurement uncertainties. The method matches radiation measurements of ratios of spectral transmissivity at six wavelengths with modeled transmissivities. The new retrieval method is fast and accurate, and thus suitable for operational purposes. It is applied to homogeneous and inhomogeneous liquid water and cirrus clouds. The results from the new algorithm are compared to observations of liquid water path obtained from a microwave radiometer, yielding an overestimation for thick liquid water clouds but a slight underestimation for thin clouds. A statistical analysis of retrieved cloud properties during three Atlantic transects is introduced. Similar characteristics of cloud properties are found in the mid latitudes and northern subtropics but the large variability of meridional distribution in the remaining regions imply the prevailing influence of weather systems compared to typical cloud distributions. With about 63% homogeneous stratocumulus clouds are found to be the prevailing cloud type over ocean, while scattered and inhomogeneous liquid water clouds amount to 16% and 21%, respectively. All analyzed distributions are affected by an increased frequency of small values of cloud properties caused by 3D radiative effects. The comparison with satellite-based and ship-based cloud retrievals along the cruise track show comparable results for the cloud optical thickness with limitations for thick liquid water clouds. The meridional distribution of effective radius agreed within the uncertainties of both methods, however, the satellite-derived values are biased toward larger mean values

    Remote sensing of cloud sides of deep convection: towards a three-dimensional retrieval of cloud particle size profiles

    No full text
    International audienceThe cloud scanner sensor is a central part of a recently proposed satellite remote sensing concept ? the three-dimensional (3-D) cloud and aerosol interaction mission (CLAIM-3D) combining measurements of aerosol characteristics in the vicinity of clouds and profiles of cloud microphysical characteristics. Such a set of collocated measurements will allow new insights in the complex field of cloud-aerosol interactions affecting directly the development of clouds and precipitation, especially in convection. The cloud scanner measures radiance reflected or emitted by cloud sides at several wavelengths to derive a profile of cloud particle size and thermodynamic phase. For the retrieval of effective size a Bayesian approach was adopted and introduced in a preceding paper. In this paper the potential of the approach, which has to account for the complex three-dimensional nature of cloud geometry and radiative transfer, is tested in realistic cloud observing situations. In a fully simulated environment realistic cloud resolving modelling provides complex 3-D structures of ice, water, and mixed phase clouds, from the early stage of convective development to mature deep convection. A three-dimensional Monte Carlo radiative transfer is used to realistically simulate the aspired observations. A large number of cloud data sets and related simulated observations provide the database for an experimental Bayesian retrieval. An independent simulation of an additional cloud field serves as a synthetic test bed for the demonstration of the capabilities of the developed retrieval techniques

    Remote sensing of cloud droplet radius profiles using solar reflectance from cloud sides – Part 1: Retrieval development and characterization

    Get PDF
    Convective clouds play an essential role for Earth's climate as well as for regional weather events since they have a large influence on the radiation budget and the water cycle. In particular, cloud albedo and the formation of precipitation are influenced by aerosol particles within clouds. In order to improve the understanding of processes from aerosol activation, from cloud droplet growth to changes in cloud radiative properties, remote sensing techniques become more and more important. While passive retrievals for spaceborne observations have become sophisticated and commonplace for inferring cloud optical thickness and droplet size from cloud tops, profiles of droplet size have remained largely uncharted territory for passive remote sensing. In principle they could be derived from observations of cloud sides, but faced with the small-scale heterogeneity of cloud sides, “classical” passive remote sensing techniques are rendered inappropriate. In this work the feasibility is demonstrated to gain new insights into the vertical evolution of cloud droplet effective radius by using reflected solar radiation from cloud sides. Central aspect of this work on its path to a working cloud side retrieval is the analysis of the impact unknown cloud surface geometry has on effective radius retrievals. This study examines the sensitivity of reflected solar radiation to cloud droplet size, using extensive 3-D radiative transfer calculations on the basis of realistic droplet size resolving cloud simulations. Furthermore, it explores a further technique to resolve ambiguities caused by illumination and cloud geometry by considering the surroundings of each pixel. Based on these findings, a statistical approach is used to provide an effective radius retrieval. This statistical effective radius retrieval is focused on the liquid part of convective water clouds, e.g., cumulus mediocris, cumulus congestus, and trade-wind cumulus, which exhibit well-developed cloud sides. Finally, the developed retrieval is tested using known and unknown cloud side scenes to analyze its performance.</p
    corecore