508 research outputs found

    Statistical Challenges and Methods for Missing and Imbalanced Data

    Get PDF
    Missing data remains a prevalent issue in every area of research. The impact of missing data, if not carefully handled, can be detrimental to any statistical analysis. Some statistical challenges associated with missing data include, loss of information, reduced statistical power and non-generalizability of findings in a study. It is therefore crucial that researchers pay close and particular attention when dealing with missing data. This multi-paper dissertation provides insight into missing data across different fields of study and addresses some of the above mentioned challenges of missing data through simulation studies and application to real datasets. The first paper of this dissertation addresses the dropout phenomenon in single-cell RNA (scRNA) sequencing through a comparative analyses of some existing scRNA sequencing techniques. The second paper of this work focuses on using simulation studies to assess whether it is appropriate to address the issue of non-detects in data using a traditional substitution approach, imputation, or a non-imputation based approach. The final paper of this dissertation presents an efficient strategy to address the issue of imbalance in data at any degree (whether moderate or highly imbalanced) by combining random undersampling with different weighting strategies. We conclude generally, based on findings from this dissertation that, missingness is not always lack of information but interestingness that needs to investigated

    On the class overlap problem in imbalanced data classification.

    Get PDF
    Class imbalance is an active research area in the machine learning community. However, existing and recent literature showed that class overlap had a higher negative impact on the performance of learning algorithms. This paper provides detailed critical discussion and objective evaluation of class overlap in the context of imbalanced data and its impact on classification accuracy. First, we present a thorough experimental comparison of class overlap and class imbalance. Unlike previous work, our experiment was carried out on the full scale of class overlap and an extreme range of class imbalance degrees. Second, we provide an in-depth critical technical review of existing approaches to handle imbalanced datasets. Existing solutions from selective literature are critically reviewed and categorised as class distribution-based and class overlap-based methods. Emerging techniques and the latest development in this area are also discussed in detail. Experimental results in this paper are consistent with existing literature and show clearly that the performance of the learning algorithm deteriorates across varying degrees of class overlap whereas class imbalance does not always have an effect. The review emphasises the need for further research towards handling class overlap in imbalanced datasets to effectively improve learning algorithms’ performance

    Learning from class-imbalanced data: overlap-driven resampling for imbalanced data classification.

    Get PDF
    Classification of imbalanced datasets has attracted substantial research interest over the past years. This is because imbalanced datasets are common in several domains such as health, finance and security, but learning algorithms are generally not designed to handle them. Many existing solutions focus mainly on the class distribution problem. However, a number of reports showed that class overlap had a higher negative impact on the learning process than class imbalance. This thesis thoroughly explores the impact of class overlap on the learning algorithm and demonstrates how elimination of class overlap can effectively improve the classification of imbalanced datasets. Novel undersampling approaches were developed with the main objective of enhancing the presence of minority class instances in the overlapping region. This is achieved by identifying and removing majority class instances potentially residing in such a region. Seven methods under the two different approaches were designed for the task. Extensive experiments were carried out to evaluate the methods on simulated and well-known real-world datasets. Results showed that substantial improvement in the classification accuracy of the minority class was obtained with favourable trade-offs with the majority class accuracy. Moreover, successful application of the methods in predictive diagnostics of diseases with imbalanced records is presented. These novel overlap-based approaches have several advantages over other common resampling methods. First, the undersampling amount is independent of class imbalance and proportional to the degree of overlap. This could effectively address the problem of class overlap while reducing the effect of class imbalance. Second, information loss is minimised as instance elimination is contained within the problematic region. Third, adaptive parameters enable the methods to be generalised across different problems. It is also worth pointing out that these methods provide different trade-offs, which offer more alternatives to real-world users in selecting the best fit solution to the problem

    Experimental evaluation of ensemble classifiers for imbalance in Big Data

    Get PDF
    Datasets are growing in size and complexity at a pace never seen before, forming ever larger datasets known as Big Data. A common problem for classification, especially in Big Data, is that the numerous examples of the different classes might not be balanced. Some decades ago, imbalanced classification was therefore introduced, to correct the tendency of classifiers that show bias in favor of the majority class and that ignore the minority one. To date, although the number of imbalanced classification methods have increased, they continue to focus on normal-sized datasets and not on the new reality of Big Data. In this paper, in-depth experimentation with ensemble classifiers is conducted in the context of imbalanced Big Data classification, using two popular ensemble families (Bagging and Boosting) and different resampling methods. All the experimentation was launched in Spark clusters, comparing ensemble performance and execution times with statistical test results, including the newest ones based on the Bayesian approach. One very interesting conclusion from the study was that simpler methods applied to unbalanced datasets in the context of Big Data provided better results than complex methods. The additional complexity of some of the sophisticated methods, which appear necessary to process and to reduce imbalance in normal-sized datasets were not effective for imbalanced Big Data.“la Caixa” Foundation, Spain, under agreement LCF/PR/PR18/51130007. This work was supported by the Junta de Castilla y León, Spain under project BU055P20 (JCyL/FEDER, UE) co-financed through European Union FEDER funds, and by the Consejería de Educación of the Junta de Castilla y León and the European Social Fund, Spain through a pre-doctoral grant (EDU/1100/2017)

    Parallel selective sampling method for imbalanced and large data classification

    Get PDF
    We proposed a new algorithm to preprocess huge and imbalanced data.This algorithm, based on distance calculations, reduce both size and imbalance.The selective sampling method was conceived for parallel and distributed computing.It was combined with SVM obtaining optimized classification performances.Synthetic and real data sets were used to evaluate the classifiers performances. Several applications aim to identify rare events from very large data sets. Classification algorithms may present great limitations on large data sets and show a performance degradation due to class imbalance. Many solutions have been presented in literature to deal with the problem of huge amount of data or imbalancing separately. In this paper we assessed the performances of a novel method, Parallel Selective Sampling (PSS), able to select data from the majority class to reduce imbalance in large data sets. PSS was combined with the Support Vector Machine (SVM) classification. PSS-SVM showed excellent performances on synthetic data sets, much better than SVM. Moreover, we showed that on real data sets PSS-SVM classifiers had performances slightly better than those of SVM and RUSBoost classifiers with reduced processing times. In fact, the proposed strategy was conceived and designed for parallel and distributed computing. In conclusion, PSS-SVM is a valuable alternative to SVM and RUSBoost for the problem of classification by huge and imbalanced data, due to its accurate statistical predictions and low computational complexity

    Data-level hybrid strategy selection for disk fault prediction model based on multivariate GAN

    Full text link
    Data class imbalance is a common problem in classification problems, where minority class samples are often more important and more costly to misclassify in a classification task. Therefore, it is very important to solve the data class imbalance classification problem. The SMART dataset exhibits an evident class imbalance, comprising a substantial quantity of healthy samples and a comparatively limited number of defective samples. This dataset serves as a reliable indicator of the disc's health status. In this paper, we obtain the best balanced disk SMART dataset for a specific classification model by mixing and integrating the data synthesised by multivariate generative adversarial networks (GAN) to balance the disk SMART dataset at the data level; and combine it with genetic algorithms to obtain higher disk fault classification prediction accuracy on a specific classification model

    Exploring uplift modeling with high class imbalance

    Get PDF
    Uplift modeling refers to individual level causal inference. Existing research on the topic ignores one prevalent and important aspect: high class imbalance. For instance in online environments uplift modeling is used to optimally target ads and discounts, but very few users ever end up clicking an ad or buying. One common approach to deal with imbalance in classification is by undersampling the dataset. In this work, we show how undersampling can be extended to uplift modeling. We propose four undersampling methods for uplift modeling. We compare the proposed methods empirically and show when some methods have a tendency to break down. One key observation is that accounting for the imbalance is particularly important for uplift random forests, which explains the poor performance of the model in earlier works. Undersampling is also crucial for class-variable transformation based models.Peer reviewe
    • …
    corecore