5,449 research outputs found

    Neighbourhood-aware counter-based broadcast scheme for wireless ad hoc networks

    Get PDF
    Broadcasting is a vital operation in mobile ad hoc networks (MANETs) and it is crucial to enhance its efficiency to ensure successful deployment. Although flooding is ideal for broadcast operations due to its simplicity and high reachability it suffers from high packet collision which can degrade network performance severely. Counter-based broadcast schemes have been introduced to alleviate the limitations of flooding. This study introduces an enhancement to counter-based broadcast by adjusting the threshold value and the Random Assessment Delay (RAD) using minimal neighbourhood information

    An efficient counter-based broadcast scheme for mobile ad hoc networks

    Get PDF
    In mobile ad hoc networks (MANETs), broadcasting plays a fundamental role, diffusing a message from a given source node to all the other nodes in the network. Flooding is the simplest and commonly used mechanism for broadcasting in MANETs, where each node retransmits every uniquely received message exactly once. Despite its simplicity, it however generates redundant rebroadcast messages which results in high contention and collision in the network, a phenomenon referred to as broadcast storm problem. Pure probabilistic approaches have been proposed to mitigate this problem inherent with flooding, where mobile nodes rebroadcast a message with a probability p which can be fixed or computed based on the local density. However, these approaches reduce the number of rebroadcasts at the expense of reachability. On the other hand, counter-based approaches inhibit a node from broadcasting a packet based on the number of copies of the broadcast packet received by the node within a random access delay time. These schemes achieve better throughput and reachability, but suffer from relatively longer delay. In this paper, we propose an efficient broadcasting scheme that combines the advantages of pure probabilistic and counter-based schemes to yield a significant performance improvement. Simulation results reveal that the new scheme achieves superior performance in terms of saved-rebroadcast, reachability and latency

    Improvement to efficient counter-based broadcast scheme through random assessment delay adaptation for MANETs

    Get PDF
    Flooding, the process in which each node retransmits every uniquely received packet exactly once is the simplest and most commonly used mechanism for broadcasting in mobile ad hoc networks (MANETs). Despite its simplicity, it can result in high redundant retransmission, contention and collision, a phenomenon collectively referred to as broadcast storm problem. To mitigate this problem, several broadcast schemes have been proposed which are commonly divided into two categories; deterministic schemes and probabilistic schemes. Probabilistic methods are quite promising because they can reduce the number of redundant rebroadcast without any control overhead. In this paper, we investigate the performance of our earlier proposed efficient counter-based broadcast scheme by adapting its random assessment delay (RAD) mechanism to network congestion. Simulation results revealed that this simple adaptation achieves superior performance in terms of saved rebroadcast, end-to-end delay and reachability

    Performance evaluation of an efficient counter-based scheme for mobile ad hoc networks based on realistic mobility model

    Get PDF
    Flooding is the simplest and commonly used mechanism for broadcasting in mobile ad hoc networks (MANETs). Despite its simplicity, it can result in high redundant retransmission, contention and collision in the network, a phenomenon referred to as broadcast storm problem. Several probabilistic broadcast schemes have been proposed to mitigate this problem inherent with flooding. Recently, we have proposed a hybrid-based scheme as one of the probabilistic scheme, which combines the advantages of pure probabilistic and counter-based schemes to yield a significant performance improvement. Despite these considerable numbers of proposed broadcast schemes, majority of these schemes’ performance evaluation was based on random waypoint model. In this paper, we evaluate the performance of our broadcast scheme using a community based mobility model which is based on social network theory and compare it against widely used random waypoint mobility model. Simulation results have shown that using unrealistic movement pattern does not truly reflect on the actual performance of the scheme in terms of saved-rebroadcast, reachability and end to end delay

    An Adaptive Probabilistic Model for Broadcasting in Mobile Ad Hoc Networks

    Get PDF
    Ad hoc peer-to-peer mobile phone networks (phone MANETs) enable cheap village level telephony for cash-strapped, off-the-grid communities. Broadcasting is a fundamental operation in such manets and is used for route discovery. This paper proposed a new broadcast technique that is lightweight, efficient and incurs low latency. Using extensive simulations, we compare our proposed technique to existing lightweight protocols. The results show that our technique is successful in outperforming existing lightweight techniques on the criteria that are critical for a phone-MANET.

    Hybrid probabilistic broadcast schemes for mobile ad hoc networks

    Get PDF
    Broadcasting is one of the fundamental data dissemination mechanisms in mobile ad hoc network (MANET), which is, for instance, extensively used in many routing protocols for route discovery process. The dynamic topology and limited communication bandwidth of such networks pose a number of challenges in designing an efficient broadcasting scheme for MANETs. The simplest approach is flooding, where each node retransmit every unique received packet exactly once on each outgoing link. Although flooding ensures that broadcast packet is received by all network nodes, it generates many redundant transmissions which can trigger high transmission collision and contention in the network, a phenomenon referred to as the broadcast storm. Several probabilistic broadcast algorithms have been proposed that incur low communication overhead to mitigate the broadcast storm problem and tend to show superior adaptability in changing environments when compared to deterministic (i.e., non-probabilistic) schemes. However, most of these schemes reduce redundant broadcasts at the expense of reachability, a requirement for near-global network topological information or support from additional hardware. This research argues that broadcast schemes that combine the important features of fixed probabilistic and counter-based schemes can reduce the broadcast storm problem without sacrificing reachability while still achieving better end-to-end delay. To this end, the first part of this research investigate the effects of forwarding probabilities and counter threshold values on the performance of fixed probabilistic and counter-based schemes. The findings of this investigation are exploited to suggest a new hybrid approach, the Probabilistic Counter-Based Scheme (PCBS) that uses the number of duplicate packets received to estimate neighbourhood density and assign a forwarding probability value to restrict the generation of so many redundant broadcast packets. The simulation results reveal that under various network conditions PCBS reduces the number of redundant transmissions, collision rate and end-to-end delay significantly without sacrificing reachability when compared against counter-based, fixed probabilistic and flood broadcasting. Often in MANETs, there are regions of different node density due to node mobility. As such, PCBS can suffer from a degree of inflexibility in terms of rebroadcast probability, since each node is assigned the same forwarding probability regardless of its local neighbourhood conditions. To address this shortcoming, the second part of this dissertation proposes an Adjusted Probabilistic Counter-Based Scheme (APCBS) that dynamically assigns the forwarding probability to a node based on its local node density using a mathematical function. Thus, a node located in a sparse region of the network is assigned a high forwarding probability while a node located in denser region is assigned a relatively lower forwarding probability. These combined effects enhance end-to-end delay, collision rate and reachability compared to PCBS variant. The performance of most broadcasting schemes that have been suggested for MANETs including those presented here, have been analysed in the context of “pure” broadcast scenarios with relatively little investigation towards their performance impact on specific applications such as route discovery process. The final part of this thesis evaluates the performance of the well-known AODV routing protocol when augmented with APCBS route discovery. Results indicate that the resulting route discovery approach reduces the routing overhead, collision rate and end-to-end delay without degrading the overall network throughput compared to the existing approaches based on flooding, counterbased and fixed probabilistic route discovery

    Performance evaluation of flooding in MANETs in the presence of multi-broadcast traffic

    Get PDF
    Broadcasting has many important uses and several mobile ad hoc networks (MANETs) protocols assume the availability of an underlying broadcast service. Applications, which make use of broadcasting, include LAN emulation, paging a particular node. However, broadcasting induces what is known as the "broadcast storm problem" which causes severe degradation in network performance, due to excessive redundant retransmission, collision, and contention. Although probabilistic flooding has been one of the earliest suggested approaches to broadcasting. There has not been so far any attempt to analyse its performance behaviour in MANETs. This paper investigates using extensive ns-2 simulations the effects of a number of important parameters in a MANET, including node speed, pause time and, traffic load, on the performance of probabilistic flooding. The results reveal that while these parameters have a critical impact on the reachability achieved by probabilistic flooding, they have relatively a lower effect on the number of saved rebroadcast packets

    The dynamic counter-based broadcast for mobile ad hoc networks

    Get PDF
    Broadcasting is a fundamental operation in mobile ad hoc networks (MANETs) crucial to the successful deployment of MANETs in practice. Simple flooding is the most basic broadcasting technique where each node rebroadcasts any received packet exactly once. Although flooding is ideal for its simplicity and high reachability it has a critical disadvantage in that it tends to generate excessive collision and consumes the medium by unneeded and redundant packets. A number of broadcasting schemes have been proposed in MANETs to alleviate the drawbacks of flooding while maintaining a reasonable level of reachability. These schemes mainly fall into two categories: stochastic and deterministic. While the former employs a simple yet effective probabilistic principle to reduce redundant rebroadcasts the latter typically requires sophisticated control mechanisms to reduce excessive broadcast. The key danger with schemes that aim to reduce redundant broadcasts retransmissions is that they often do so at the expense of a reachability threshold which can be required in many applications. Among the proposed stochastic schemes, is counter-based broadcasting. In this scheme redundant broadcasts are inhibited by criteria related to the number of duplicate packets received. For this scheme to achieve optimal reachability, it requires fairly stable and known nodal distributions. However, in general, a MANETs‟ topology changes continuously and unpredictably over time. Though the counter-based scheme was among the earliest suggestions to reduce the problems associated with broadcasting, there have been few attempts to analyse in depth the performance of such an approach in MANETs. Accordingly, the first part of this research, Chapter 3, sets a baseline study of the counter-based scheme analysing it under various network operating conditions. The second part, Chapter 4, attempts to establish the claim that alleviating existing stochastic counter-based scheme by dynamically setting threshold values according to local neighbourhood density improves overall network efficiency. This is done through the implementation and analysis of the Dynamic Counter-Based (DCB) scheme, developed as part of this work. The study shows a clear benefit of the proposed scheme in terms of average collision rate, saved rebroadcasts and end-to-end delay, while maintaining reachability. The third part of this research, Chapter 5, evaluates dynamic counting and tests its performance in some approximately realistic scenarios. The examples chosen are from the rapidly developing field of Vehicular Ad hoc Networks (VANETs). The schemes are studied under metropolitan settings, involving nodes moving in streets and lanes with speed and direction constraints. Two models are considered and implemented: the first assuming an unobstructed open terrain; the other taking account of buildings and obstacles. While broadcasting is a vital operation in most MANET routing protocols, investigation of stochastic broadcast schemes for MANETs has tended to focus on the broadcast schemes, with little examination on the impact of those schemes in specific applications, such as route discovery in routing protocols. The fourth part of this research, Chapter 6, evaluates the performance of the Ad hoc On-demand Distance Vector (AODV) routing protocol with a route discovery mechanism based on dynamic-counting. AODV was chosen as it is widely accepted by the research community and is standardised by the MANET IETF working group. That said, other routing protocols would be expected to interact in a similar manner. The performance of the AODV routing protocol is analysed under three broadcasting mechanisms, notably AODV with flooding, AODV with counting and AODV with dynamic counting. Results establish that a noticeable advantage, in most considered metrics can be achieved using dynamic counting with AODV compared to simple counting or traditional flooding. In summary, this research analysis the Dynamic Counter-Based scheme under a range of network operating conditions and applications; and demonstrates a clear benefit of the scheme when compared to its predecessors under a wide range of considered conditions

    Development of an efficient Ad Hoc broadcasting scheme for critical networking environments

    Get PDF
    Mobile ad hoc network has been widely deployed in support of the communications in hostile environment without conventional networking infrastructure, especially in the environments with critical conditions such as emergency rescue activities in burning building or earth quick evacuation. However, most of the existing ad hoc based broadcasting schemes either rely on GPS location or topology information or angle-of-arrival (AoA) calculation or combination of some or all to achieve high reachability. Therefore, these broadcasting schemes cannot be directly used in critical environments such as battlefield, sensor networks and natural disasters due to lack of node location and topology information in such critical environments. This research work first begins by analyzing the broadcast coverage problem and node displacement form ideal locations problem in ad hoc networks using theoretical analysis. Then, this research work proposes an efficient broadcast relaying scheme, called Random Directional Broadcasting Relay (RDBR), which greatly reduces the number of retransmitting nodes and end-to-end delay while achieving high reachability. This is done by selecting a subset of neighboring nodes to relay the packet using directional antennas without relying on node location, network topology and complex angle-of-arrival (AoA) calculations. To further improve the performance of the RDBR scheme in complex environments with high node density, high node mobility and high traffic rate, an improved RDBR scheme is proposed. The improved RDBR scheme utilizes the concept of gaps between neighboring sectors to minimize the overlap between selected relaying nodes in high density environments. The concept of gaps greatly reduces both contention and collision and at the same time achieves high reachability. The performance of the proposed RDBR schemes has been evaluated by comparing them against flooding and Distance-based schemes. Simulation results show that both proposed RDBR schemes achieve high reachability while reducing the number of retransmitting nodes and end-to-end delay especially in high density environments. Furthermore, the improved RDBR scheme achieves better performance than RDBR in high density and high traffic environment in terms of reachability, end-to-end delay and the number of retransmitting nodes

    On the performance of probabilistic flooding in wireless mobile ad hoc networks

    Get PDF
    Broadcasting in MANET’s has traditionally been based on flooding, but this can induce broadcast storms that severely degrade network performance due to redundant retransmission, collision and contention. Probabilistic flooding, where a node rebroadcasts a newly arrived one-to-all packet with some probability, p, was an early suggestion to reduce the broadcast storm problem. The first part of this thesis investigates the effects on the performance of probabilistic flooding of a number of important MANET parameters, including node speed, traffic load and node density. It transpires that these parameters have a critical impact both on reachability and on the number of so-called “saved rebroadcast packets” achieved. For instance, across a range of rebroadcast probability values, as network density increases from 25 to 100 nodes, reachability achieved by probabilistic flooding increases from 85% to 100%. Moreover, as node speed increases from 2 to 20 m/sec, reachability increases from 90% to 100%. The second part of this thesis proposes two new probabilistic algorithms that dynamically adjust the rebroadcasting probability contingent on node distribution using only one-hop neighbourhood information, without requiring any assistance of distance measurements or location-determination devices. The performance of the new algorithm is assessed and compared to blind flooding as well as the fixed probabilistic approach. It is demonstrated that the new algorithms have superior performance characteristics in terms of both reachability and saved rebroadcasts. For instance, the suggested algorithms can improve saved rebroadcasts by up to 70% and 47% compared to blind and fixed probabilistic flooding, respectively, even under conditions of high node mobility and high network density without degrading reachability. The final part of the thesis assesses the impact of probabilistic flooding on the performance of routing protocols in MANETs. Our performance results indicate that using our new probabilistic flooding algorithms during route discovery enables AODV to achieve a higher delivery ratio of data packets while keeping a lower routing overhead compared to using blind and fixed probabilistic flooding. For instance, the packet delivery ratio using our algorithm is improved by up to 19% and 12% compared to using blind and fixed probabilistic flooding, respectively. This performance advantage is achieved with a routing overhead that is lower by up to 28% and 19% than in fixed probabilistic and blind flooding, respectively
    corecore