198,374 research outputs found

    Comparing Evaluation Methods for Encumbrance and Walking on Interaction with Touchscreen Mobile Devices

    Get PDF
    In this paper, two walking evaluation methods were compared to evaluate the effects of encumbrance while the preferred walking speed (PWS) is controlled. Users frequently carry cumbersome objects (e.g. shopping bags) and use mobile devices at the same time which can cause interaction difficulties and erroneous input. The two methods used to control the PWS were: walking on a treadmill and walking around a predefined route on the ground while following a pacesetter. The results from our target acquisition experiment showed that for ground walking at 100% of PWS, accuracy dropped to 36% when carrying a bag in the dominant hand while accuracy reduced to 34% for holding a box under the dominant arm. We also discuss the advantages and limitations of each evaluation method when examining encumbrance and suggest treadmill walking is not the most suitable approach to use if walking speed is an important factor in future mobile studies

    Dynamic mobile anchor path planning for underwater wireless sensor networks

    Get PDF
    In an underwater wireless sensor network (UWSN), the location of the sensor nodes plays a significant role in the localization process. The location information is obtained by using the known positions of anchor nodes. For underwater environments, instead of using various static anchor nodes, mobile anchor nodes are more efficient and cost-effective to cover the monitoring area. Nevertheless, the utilization of these mobile anchors requires adequate path planning strategy. Mzost of the path planning algorithms do not consider irregular deployment, caused by the effects of water currents. Consequently, this leads towards the inefficient energy consumption by mobile anchors due to unnecessary transmission of beacon messages at unnecessary areas. Therefore, an efficient dynamic mobile path planning (EDMPP) algorithm to tackle the irregular deployment and non-collinear virtual beacon point placement, targeting the underwater environment settings is presented in this paper. In addition, EDMPP controls the redundant beacon message deployment and overlapping, for beacon message distribution in mobile assistant localization. The simulation results show that the performance of the EDMPP is improved by increasing the localization accuracy and decreasing the energy consumption with optimum path length

    A Comparison of Spatial-based Targeted Disease Containment Strategies using Mobile Phone Data

    Get PDF
    Epidemic outbreaks are an important healthcare challenge, especially in developing countries where they represent one of the major causes of mortality. Approaches that can rapidly target subpopulations for surveillance and control are critical for enhancing containment processes during epidemics. Using a real-world dataset from Ivory Coast, this work presents an attempt to unveil the socio-geographical heterogeneity of disease transmission dynamics. By employing a spatially explicit meta-population epidemic model derived from mobile phone Call Detail Records (CDRs), we investigate how the differences in mobility patterns may affect the course of a realistic infectious disease outbreak. We consider different existing measures of the spatial dimension of human mobility and interactions, and we analyse their relevance in identifying the highest risk sub-population of individuals, as the best candidates for isolation countermeasures. The approaches presented in this paper provide further evidence that mobile phone data can be effectively exploited to facilitate our understanding of individuals' spatial behaviour and its relationship with the risk of infectious diseases' contagion. In particular, we show that CDRs-based indicators of individuals' spatial activities and interactions hold promise for gaining insight of contagion heterogeneity and thus for developing containment strategies to support decision-making during country-level pandemics

    An Evaluation of Input Controls for In-Car Interactions

    Get PDF
    The way drivers operate in-car systems is rapidly changing as traditional physical controls, such as buttons and dials, are being replaced by touchscreens and touch-sensing surfaces. This has the potential to increase driver distraction and error as controls may be harder to find and use. This paper presents an in-car, on the road driving study which examined three key types of input controls to investigate their effects: a physical dial, pressure-based input on a touch surface and touch input on a touchscreen. The physical dial and pressure-based input were also evaluated with and without haptic feedback. The study was conducted with users performing a list-based targeting task using the different controls while driving on public roads. Eye-gaze was recorded to measure distraction from the primary task of driving. The results showed that target accuracy was high across all input methods (greater than 94%). Pressure-based targeting was the slowest while directly tapping on the targets was the faster selection method. Pressure-based input also caused the largest number of glances towards to the touchscreen but the duration of each glance was shorter than directly touching the screen. Our study will enable designers to make more appropriate design choices for future in-car interactions

    An Evaluation of Touch and Pressure-Based Scrolling and Haptic Feedback for In-car Touchscreens

    Get PDF
    An in-car study was conducted to examine different input techniques for list-based scrolling tasks and the effectiveness of haptic feedback for in-car touchscreens. The use of physical switchgear on centre consoles is decreasing which allows designers to develop new ways to interact with in-car applications. However, these new methods need to be evaluated to ensure they are usable. Therefore, three input techniques were tested: direct scrolling, pressure-based scrolling and scrolling using onscreen buttons on a touchscreen. The results showed that direct scrolling was less accurate than using onscreen buttons and pressure input, but took almost half the time when compared to the onscreen buttons and was almost three times quicker than pressure input. Vibrotactile feedback did not improve input performance but was preferred by the users. Understanding the speed vs. accuracy trade-off between these input techniques will allow better decisions when designing safer in-car interfaces for scrolling applications

    Food and Beverage Marketing to Children and Adolescents: An Environment at Odds With Good Health

    Get PDF
    Synthesizes research about the effectiveness of industry self-regulatory marketing practices promoting "better-for-you" foods and beverages to children and adolescents. Examines types of media used for unhealthy food marketing and race/ethnicity targeted
    • …
    corecore