307 research outputs found

    Assessment and control of spacecraft electromagnetic interference

    Get PDF
    Design criteria are presented to provide guidance in assessing electromagnetic interference from onboard sources and establishing requisite control in spacecraft design, development, and testing. A comprehensive state-of-the-art review is given which covers flight experience, sources and transmission of electromagnetic interference, susceptible equipment, design procedure, control techniques, and test methods

    Ambulatory position and orientation tracking fusing magnetic and inertial sensing

    Get PDF
    This paper presents the design and testing of a portable magnetic system combined with miniature inertial sensors for ambulatory 6 degrees of freedom ( DOF) human motion tracking. The magnetic system consists of three orthogonal coils, the source, fixed to the body and 3-D magnetic sensors, fixed to remote body segments, which measure the fields generated by the source. Based on the measured signals, a processor calculates the relative positions and orientations between source and sensor. Magnetic actuation requires a substantial amount of energy which limits the update rate with a set of batteries. Moreover, the magnetic field can easily be disturbed by ferromagnetic materials or other sources. Inertial sensors can be sampled at high rates, require only little energy and do not suffer from magnetic interferences. However, accelerometers and gyroscopes can only measure changes in position and orientation and suffer from integration drift. By combing measurements from both systems in a complementary Kalman filter structure, an optimal solution for position and orientation estimates is obtained. The magnetic system provides 6 DOF measurements at a relatively low update rate while the inertial sensors track the changes position and orientation in between the magnetic updates. The implemented system is tested against a lab-bound camera tracking system for several functional body movements. The accuracy was about 5 mm for position and 3 degrees for orientation measurements. Errors were higher during movements with high velocities due to relative movement between source and sensor within one cycle of magnetic actuation

    Electromagnetic Tracking for Medical Imaging

    Get PDF
    This thesis explores the novel use of a wireless electromagnetic: EM) tracking device in a Computed Tomography: CT) environment. The sources of electromagnetic interference inside a Philips Brilliant Big Bore CT scanner are analyzed. A research version of the Calypso wireless tracking system was set up inside the CT suite, and a set of three Beacon transponders was bonded to a plastic fixture. The tracking system was tested under different working parameters including orientation of tracking beacons, the gain level of the frontend amplifier, the distance between the transponders and the sensor array, the rotation speed of the CT gantry, and the presence/absence of the CT X-ray source. The performance of the tracking system reveals two obvious factors which bring in electromagnetic interference: 1) metal like effect brought in by carbon fiber patient couch and 2) electromagnetic disturbance due to spinning metal inside the CT gantry. The accuracy requirements for electromagnetic tracking in the CT environment are a Root Mean Square: RMS) error of \u3c2 mm in stationary position tracking. Within a working volume of 120×120×120 mm3 centered 200 mm below the sensor array, the tracking system achieves the desired clinical goal

    Improved calibration Framework for electromagnetic tracking devices

    Get PDF
    Journal ArticleElectromagnetic trackers have many favorable characteristics but are notorious for their sensitivity to magnetic field distortions resulting from metal and electronic equipment in the environment. We categorize existing tracker calibration methods and present an improved technique for reducing static position and orientation errors inherent to these devices. A quaternion based formulation provides a simple and fast computational framework for representing orientation errors. Our experimental apparatus consists of a 6DOF mobile platform and an optical position measurement system, allowing collection of full pose data at nearly arbitrary orientations of the receiver. A polynomial correction technique is applied and evaluated using a Polhemus Fastrak resulting in a substantial improvement of tracking accuracy. Finally, we apply advanced visualization algorithms to give new insight into the nature of the magnetic distortion field

    A Survey of Interaction Techniques and Devices for Large High Resolution Displays

    Get PDF
    Innovations in large high-resolution wall-sized displays have been yielding benefits to visualizations in industry and academia, leading to a rapidly growing increase of their implementations. In scenarios such as these, the displayed visual information tends to be larger than the users field of view, hence the necessity to move away from traditional interaction methods towards more suitable interaction devices and techniques. This paper aspires to explore the state-of-the-art with respect to such technologies for large high-resolution displays

    Assessment of Electromagnetic Tracking Accuracy for Endoscopic Ultrasound

    Get PDF
    Endoscopic ultrasound (EUS) is a minimally-invasive imaging technique that can be technically difficult to perform due to the small field of view and uncertainty in the endoscope position. Electromagnetic (EM) tracking is emerging as an important technology in guiding endoscopic interventions and for training in endotherapy by providing information on endoscope location by fusion with pre-operative images. However, the accuracy of EM tracking could be compromised by the endoscopic ultrasound transducer. In this work, we quantify the precision and accuracy of EM tracking sensors inserted into the working channel of a flexible endoscope, with the ultrasound transducer turned on and off. The EUS device was found to have little (no significant) effect on static tracking accuracy although jitter increased significantly. A significant change in the measured distance between sensors arranged in a fixed geometry was found during a dynamic acquisition. In conclusion, EM tracking accuracy was not found to be significantly affected by the flexible endoscope

    3D measurement systems for robot manipulators

    Get PDF

    Inertial and Magnetic Posture Tracking for Inserting Humans Into Networked Virtual Environments

    Get PDF
    Proceedings of ACM Symposium on Virtual Reality Software & Technology (VRST 2001), Banff, Alberta, Canada, 15 - 17 November 2001, pp.9-16.Accepted/Published Conference Pape
    corecore