123 research outputs found

    Practical, appropriate, empirically-validated guidelines for designing educational games

    Get PDF
    There has recently been a great deal of interest in the potential of computer games to function as innovative educational tools. However, there is very little evidence of games fulfilling that potential. Indeed, the process of merging the disparate goals of education and games design appears problematic, and there are currently no practical guidelines for how to do so in a coherent manner. In this paper, we describe the successful, empirically validated teaching methods developed by behavioural psychologists and point out how they are uniquely suited to take advantage of the benefits that games offer to education. We conclude by proposing some practical steps for designing educational games, based on the techniques of Applied Behaviour Analysis. It is intended that this paper can both focus educational games designers on the features of games that are genuinely useful for education, and also introduce a successful form of teaching that this audience may not yet be familiar with

    Task and Interruption Management in Activity-Centric Computing

    Get PDF

    The Experiences of Higher Education Online Instructors with the Implementation of Digital Learning Materials: A Phenomenological Study

    Get PDF
    The purpose of this transcendental phenomenological study was to describe the experiences of online instructors at Christian colleges with the implementation of digital learning materials within online learning environments. At this stage of the research, digital learning materials can be generally defined as e-texts, learning materials accessible through tablet technology, interactive textbooks, or any other course materials in digital format. The theory guiding this study is the unified theory of acceptance and use of technology (UTAUT), which explains the factors involved in accepting or rejecting technology use and applies to higher education online instructors’ implementation of digital learning materials. The central research question guiding this phenomenological study was: What are the experiences of online instructors at Christian colleges with the implementation of digital learning materials? This transcendental phenomenological study used purposeful and criterion sampling which aims for maximum variation and saturation in order to select online instructors from three Christian colleges with experiences regarding the implementation of digital learning materials. Data was collected through interviews, focus groups, and journal entries, and analyzed through the processes of epoché, phenomenological reduction, imaginative variation, and synthesis. The four primary themes identified through analysis were: (a) ease of use, (b) learning enrichment, (c) professional community, and (d) initiative to expand knowledge and resources; these themes were used to describe the essence of the phenomenon of the implementation of digital learning materials by online instructors in higher education. Implications for this study were also discussed

    Modeling and Evaluating Pilot Performance in NextGen: Review of and Recommendations Regarding Pilot Modeling Efforts, Architectures, and Validation Studies

    Get PDF
    NextGen operations are associated with a variety of changes to the national airspace system (NAS) including changes to the allocation of roles and responsibilities among operators and automation, the use of new technologies and automation, additional information presented on the flight deck, and the entire concept of operations (ConOps). In the transition to NextGen airspace, aviation and air operations designers need to consider the implications of design or system changes on human performance and the potential for error. To ensure continued safety of the NAS, it will be necessary for researchers to evaluate design concepts and potential NextGen scenarios well before implementation. One approach for such evaluations is through human performance modeling. Human performance models (HPMs) provide effective tools for predicting and evaluating operator performance in systems. HPMs offer significant advantages over empirical, human-in-the-loop testing in that (1) they allow detailed analyses of systems that have not yet been built, (2) they offer great flexibility for extensive data collection, (3) they do not require experimental participants, and thus can offer cost and time savings. HPMs differ in their ability to predict performance and safety with NextGen procedures, equipment and ConOps. Models also vary in terms of how they approach human performance (e.g., some focus on cognitive processing, others focus on discrete tasks performed by a human, while others consider perceptual processes), and in terms of their associated validation efforts. The objectives of this research effort were to support the Federal Aviation Administration (FAA) in identifying HPMs that are appropriate for predicting pilot performance in NextGen operations, to provide guidance on how to evaluate the quality of different models, and to identify gaps in pilot performance modeling research, that could guide future research opportunities. This research effort is intended to help the FAA evaluate pilot modeling efforts and select the appropriate tools for future modeling efforts to predict pilot performance in NextGen operations

    The Virtual Driver: Integrating Physical and Cognitive Human Models to Simulate Driving with a Secondary In-Vehicle Task.

    Full text link
    Models of human behavior provide insight into people’s choices and actions and form the basis of engineering tools for predicting performance and improving interface design. Most human models are either cognitive, focusing on the information processing underlying the decisions made when performing a task, or physical, representing postures and motions used to perform the task. In general, cognitive models contain a highly simplified representation of the physical aspects of a task and are best suited for analysis of tasks with only minor motor components. Physical models require a person experienced with the task and the software to enter detailed information about how and when movements should be made, a process that can be costly, time consuming, and inaccurate. Many tasks have both cognitive and physical components, which may interact in ways that could not be predicted using a cognitive or physical model alone. This research proposes a solution by combining a cognitive model, the Queuing Network – Model Human Processor, and a physical model, the Human Motion Simulation (HUMOSIM) Framework, to produce an integrated cognitive-physical human model that makes it possible to study complex human-machine interactions. The physical task environment is defined using the HUMOSIM Framework, which communicates relevant information such as movement times and difficulty to the QN-MHP. Action choice and movement sequencing are performed in the QN-MHP. The integrated model’s more natural movements, generated by motor commands from the QN-MHP, and more realistic cognitive decisions, made using physical information from the Framework, make it useful for evaluating different designs for tasks, spaces, systems, and jobs. The Virtual Driver is the application of the integrated model to driving with an in-vehicle task. A driving simulator experiment was used to tune and evaluate the integrated model. Increasing the visual and physical difficulty of the in-vehicle task affected the resource-sharing strategies drivers used and resulted in deterioration in driving and in-vehicle task performance, especially for shorter drivers. The Virtual Driver replicates basic driving, in-vehicle task, and resource-sharing behaviors and provides a new way to study driver distraction. The model has applicability to interface design and predictions about staffing requirements and performance.Ph.D.Biomedical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/75847/1/hjaf_1.pd

    Behaviour-aware mobile touch interfaces

    Get PDF
    Mobile touch devices have become ubiquitous everyday tools for communication, information, as well as capturing, storing and accessing personal data. They are often seen as personal devices, linked to individual users, who access the digital part of their daily lives via hand-held touchscreens. This personal use and the importance of the touch interface motivate the main assertion of this thesis: Mobile touch interaction can be improved by enabling user interfaces to assess and take into account how the user performs these interactions. This thesis introduces the new term "behaviour-aware" to characterise such interfaces. These behaviour-aware interfaces aim to improve interaction by utilising behaviour data: Since users perform touch interactions for their main tasks anyway, inferring extra information from said touches may, for example, save users' time and reduce distraction, compared to explicitly asking them for this information (e.g. user identity, hand posture, further context). Behaviour-aware user interfaces may utilise this information in different ways, in particular to adapt to users and contexts. Important questions for this research thus concern understanding behaviour details and influences, modelling said behaviour, and inference and (re)action integrated into the user interface. In several studies covering both analyses of basic touch behaviour and a set of specific prototype applications, this thesis addresses these questions and explores three application areas and goals: 1) Enhancing input capabilities – by modelling users' individual touch targeting behaviour to correct future touches and increase touch accuracy. The research reveals challenges and opportunities of behaviour variability arising from factors including target location, size and shape, hand and finger, stylus use, mobility, and device size. The work further informs modelling and inference based on targeting data, and presents approaches for simulating touch targeting behaviour and detecting behaviour changes. 2) Facilitating privacy and security – by observing touch targeting and typing behaviour patterns to implicitly verify user identity or distinguish multiple users during use. The research shows and addresses mobile-specific challenges, in particular changing hand postures. It also reveals that touch targeting characteristics provide useful biometric value both in the lab as well as in everyday typing. Influences of common evaluation assumptions are assessed and discussed as well. 3) Increasing expressiveness – by enabling interfaces to pass on behaviour variability from input to output space, studied with a keyboard that dynamically alters the font based on current typing behaviour. Results show that with these fonts users can distinguish basic contexts as well as individuals. They also explicitly control font influences for personal communication with creative effects. This thesis further contributes concepts and implemented tools for collecting touch behaviour data, analysing and modelling touch behaviour, and creating behaviour-aware and adaptive mobile touch interfaces. Together, these contributions support researchers and developers in investigating and building such user interfaces. Overall, this research shows how variability in mobile touch behaviour can be addressed and exploited for the benefit of the users. The thesis further discusses opportunities for transfer and reuse of touch behaviour models and information across applications and devices, for example to address tradeoffs of privacy/security and usability. Finally, the work concludes by reflecting on the general role of behaviour-aware user interfaces, proposing to view them as a way of embedding expectations about user input into interactive artefacts
    • …
    corecore