113 research outputs found

    Facilitating creativity in interdisciplinary design teams using cognitive processes: A review

    Get PDF
    Interdisciplinary, or cross-functional, teams have become quite common for engineering and design. Many of today’s scientific breakthroughs occur in interdisciplinary teams, as the increasingly complex problems facing society often cannot be addressed by single disciplines alone. However, fostering creative and productive collaboration in interdisciplinary teams is no easy challenge. First, leading creative teamwork is difficult by itself. Second, many of the factors that impede teams and teamwork in general are exacerbated in interdisciplinary teams as a result of differences between team members. In this paper, we will review the team creativity psychology and management literature, and discuss how cognitive processes that facilitate creativity can be used by engineering and design teams. Specifically, past research has shown problem construction that allows teams to develop a structure to guide solving ambiguous problems. Further, problem construction allows teams to develop a shared understanding of the problem which aids in later processes. While there is significant research on idea generation, results suggest that teams may not be better at this than individuals. In this review, we discuss how idea generation in teams can mitigate some of the issues that lead to this effect. Finally, team research has only recently began to determine what factors influence idea evaluation and selection for implementation

    Research methods in engineering design: a synthesis of recent studies using a systematic literature review

    Get PDF
    Producción CientíficaThe relation between scientific research and engineering design is fraught with controversy. While the number of academic PhD programs on design grows, because the discipline is in its infancy, there is no consolidated method for systematically approaching the generation of knowledge in this domain. This paper reviews recently published papers from four top-ranked journals in engineering design to analyse the research methods that are frequently used. The research questions consider the aim and contributions of the papers, as well as which experimental design and which sources of data are being used. Frequency tables show the high variety of approaches and aims of the papers, combining both qualitative and quantitative empirical approaches and analytical methods. Most of the papers focus on methodological concerns or on delving into a particular aspect of the design process. Data collection methods are also diverse without a clear relation between the type of method and the objective or strategy of the research. This paper aims to act as a valuable resource for academics, providing definitions related to research methods and referencing examples, and for researchers, shedding light on some of the trends and challenges for current research in the domain of engineering design.Universidad de Valladolid (PID 2020 21 038)Agencia Estatal de Investigación (PID2020-118216RB-I00) and (PID2020-112584RB-C32)Publicación en abierto financiada por el Consorcio de Bibliotecas Universitarias de Castilla y León (BUCLE), con cargo al Programa Operativo 2014ES16RFOP009 FEDER 2014-2020 DE CASTILLA Y LEÓN, Actuación:20007-CL - Apoyo Consorcio BUCL

    Processus et méthodes pour la résolution de problèmes interdisciplinaires et pour l'intégration de technologies dans des Domaines fortement Basés sur la Connaissance

    Get PDF
    Most of the major technological challenges of the 21st century like e.g., reduction of greenhouse gas emission and sustainable energy supply, but also the bio- and nano-technological revolutions require intensified collaboration between different disciplines of engineering design as well as of natural science.The present Ph.D. research tries to provide some insight into the questions of• How to provide methodological support for creative problem solving in interdisciplinary groups composed of engineers and natural scientists?• How to support the process of the integration of a technology originating from a knowledge-intensive domain in order to solve a given design problem?The literature analyzed relevant aspects on several systemic levels (global, institutional, team-, individual and problem- perspective).The review allowed highlighting problems related to both, the activity as such as well as to the methods which seem a priori appropriate to support it. In this regard, incoherent interpretive schemes and majority influence are examples for the former and performance drawbacks as well as learning difficulties associated to hierarchical methodologies are instances of the latter.Based on the results of the literature review, two experiments were conducted.The first experiment inquired into the impact of disciplinary group composition (H1) as well as of the applied methodology (H2) on the creative group problem solving process and its outcomes.In a laboratory experiment 60 participants, 45 with a life science background and 15 with a mechanical engineering background were trained either in instances of intuitive approaches (Brainstorming, Mind Mapping) or in analytical, hierarchical methodology (TRIZ/USIT). Then, they had to solve an ill-defined medical problem in either mono- or multidisciplinary teams. The creative process as well as the output was documented using questionnaires and documentation sheets. Further the output was evaluated quantitatively by two domain experts before it was categorized qualitatively.Statistical analyses (ANOVA, Correlation parameters and Attraction rates), to a certain extent, support H1 and H2. More importantly however, the experiment shows differences related to method performance in general and as a function of disciplinary group composition in particular.The second experiment investigated whether concepts of TRIZ and its derivatives ((A/U)SIT) are appropriate to provide support for the process of technology integration before the background of an industrial NCD/NPPD process (H3).In order to test this hypothesis a model was developed which allows the identification and resolution of problems which typically appear during the integration of a specific technology into a given application. The model incorporates two of the most important concepts of TRIZ, and is sought to facilitate creative problem solving attempts in both, mono- and multidisciplinary teams.The said model was tested during an industrial NCD study in the roller bearing industry. After the case study, the participating engineers were asked to compare the applied model and the associated technology integration process with existing approaches used in the company.The results of the experiment point to superior performance of the presented model in terms of knowledge transfer-related and idea quality-related criteria. However, required resources for process conduction and necessary effort for the learning of the approach were considered comparable to existing approaches.The present Ph.D. work contributes to the understanding of creative problem solving in interdisciplinary groups in general and related to technology integration in particular. Especially the comparison of more pragmatic intuitive methods with more hierarchical analytical approaches depending on disciplinary group composition provided relevant insight for R&D processes.Les principaux enjeux technico-scientifiques du 21ème siècle sont caractérisés par une interdisciplinarité et une convergence des technologies de plus en plus importantes. L'évolution des produits et services basés sur la bio- et la nanotechnologie sont parmi les exemples les plus connus. Il manque cependant des processus et des méthodes permettant d'organiser et de structurer la résolution de problème dans des environnements interdisciplinaires – ce terme faisant ici référence à la collaboration entre ingénieurs et chercheurs scientifiques.Ainsi, la question de recherche de ce travail de doctorat est la suivante :Comment soutenir et faciliter la résolution créative de problème interdisciplinaire et l'intégration des technologies dans des domaines basés sur la connaissance ?Pour répondre à cette question, trois hypothèses ont été formulées :La première hypothèse suggère que la composition d'un groupe en terme de disciplines (groupe multi- ou monodisciplinaire) a un impact sur le processus de résolution de problème en groupe ainsi que sur les résultats de ce processus.La deuxième hypothèse suggère un impact du support méthodologique sur le processus de résolution de problème en groupe ainsi que sur les résultats de ce processus.La troisième hypothèse suggère quant à elle que les concepts et notions clés des méthodes analytiques comme TRIZ et USIT peuvent être utilisés dans un processus d'intégration de technologie et peuvent soutenir ce processus.Les deux premières hypothèses ont été testées et validées par une expérimentation dans laquelle des groupes mono- et multidisciplinaires devaient générer des solutions pour un problème complexe en utilisant des méthodes intuitives ou analytiques. Alors que la composition de groupe impacte principalement les aspects quantitatifs et qualitatifs des solutions proposées, le support méthodologique influence quant à lui le processus de résolution de problème ainsi que les aspects qualitatifs des solutions. Plus important, l'impact des méthodes semble être dépendant de la composition des groupes.Pour tester la troisième hypothèse, les résultats de la première expérimentation ont été utilisés pour générer un modèle permettant de structurer la recherche et l'intégration d'une ou plusieurs technologies dans le cadre du développement de nouveaux produits. Ce modèle, qui intègre des méthodes et outils provenant de différentes méthodologies, a été testé par des ingénieurs lors d'une étude de cas industrielle dans le secteur des roulements à bille. L'évaluation du modèle montre qu'il semble faciliter le transfert de connaissance et améliorer la créativité des concepts développés comparé aux approches déjà existantes. En ce qui concerne l'effort nécessaire pour l'apprentissage et la mise en œuvre du modèle développé, les performances sont comparables à celles obtenues avec les méthodes préexistantes.Les résultats de ce travail sont particulièrement intéressants pour les équipes de la R et D et leur management dans les secteurs de la haute technologie ainsi que dans des domaines à l'interface entre l'ingénierie et les sciences naturelles. Le modèle développé est actuellement appliqué dans une démarche d'open innovation dans le secteur de la pharmacologie

    Perspectives of academics and practitioners on design thinking

    Get PDF
    Design thinking has attracted a significant amount of interest and attention from the non-design sector in areas such as finance, government services and transport. This has resulted in new definitions that appear to describe design thinking as the mythical process that generates innovation and as a result, creating confusion and causing some to question its meaning. Research was undertaken to explore the possible knowledge gap that exists between academic and practitioner understanding of design thinking and its practical application. The relationship between the two has been articulated and a data driven model of design thinking created to further understanding of the meaning of design thinking. Firstly, an initial literature review was conducted to examine the origins, ownership and relationship between design thinking and four other related terms. Secondly, four common characteristics of design thinking were identified from projects reported by academics and practitioners as examples of the application of design thinking. The literature review provided the point of departure for the design of the empirical research instrument (RI). From the initial literature review four common characteristics of design thinking was identified; they were: drivers , experts , impact and processes . The research methodology employed constructivist grounded theory using a multi-qualitative method to maximise the capacity to gather high quality data. Pilot studies were conducted internally to test out the research instrument. From the pilot studies an additional common characteristic identified: design problem , being traditional or non-traditional. Following the pilot studies, primary data collection methods of interviews and online survey were employed. A total of 56 participants took part in the study, the participants who took part were academics and design practitioners from around the world. A total of 13 interviews were conducted and 43 survey responses were collected. The interviews and online survey used in data collection formed two stages of a triangulation strategy that was used to explore all the research questions. ii Two data sets were created from the interviews and online survey, which were analysed by thematic analysis and content analysis. From the thematic analysis, the five common characteristics identified from the literature review and pilot studies were confirmed; two additional common characteristics were identified as multidisciplinary and knowledge . Content analysis was conducted to identify evidence to describe the 7 common characteristics identified. Furthermore, the modes of expression for design thinking were also identified from the data in order to explore its relationship to design education. Case study analysis was the third stage of the triangulation strategy employed. It was conducted to check the reliably of the findings. This involved three design school case studies and three practice-based case studies of which two were for product designs and one was for service design. A qualitative data model of design thinking was developed to present the findings of the research. The research was then validated by a PhD seminar at Lancaster University and a validation study with experienced design practitioners. A final literature review was conducted after the validation studies to compare the research findings to the most recently published literature. From the literature review and validation studies, any appropriate findings were incorporated into the theory constructed

    ICS Materials. Towards a re-Interpretation of material qualities through interactive, connected, and smart materials.

    Get PDF
    The domain of materials for design is changing under the influence of an increased technological advancement, miniaturization and democratization. Materials are becoming connected, augmented, computational, interactive, active, responsive, and dynamic. These are ICS Materials, an acronym that stands for Interactive, Connected and Smart. While labs around the world are experimenting with these new materials, there is the need to reflect on their potentials and impact on design. This paper is a first step in this direction: to interpret and describe the qualities of ICS materials, considering their experiential pattern, their expressive sensorial dimension, and their aesthetic of interaction. Through case studies, we analyse and classify these emerging ICS Materials and identified common characteristics, and challenges, e.g. the ability to change over time or their programmability by the designers and users. On that basis, we argue there is the need to reframe and redesign existing models to describe ICS materials, making their qualities emerge

    Exploring the potential of physical visualizations

    Get PDF
    The goal of an external representation of abstract data is to provide insights and convey information about the structure of the underlying data, therefore helping people execute tasks and solve problems more effectively. Apart from the popular and well-studied digital visualization of abstract data there are other scarcely studied perceptual channels to represent data such as taste, sound or haptic. My thesis focuses on the latter and explores in which ways human knowledge and ability to sense and interact with the physical non-digital world can be used to enhance the way in which people analyze and explore abstract data. Emerging technological progress in digital fabrication allow an easy, fast and inexpensive production of physical objects. Machines such as laser cutters and 3D printers enable an accurate fabrication of physical visualizations with different form factors as well as materials. This creates, for the first time, the opportunity to study the potential of physical visualizations in a broad range. The thesis starts with the description of six prototypes of physical visualizations from static examples to digitally augmented variations to interactive artifacts. Based on these explorations, three promising areas of potential for physical visualizations were identified and investigated in more detail: perception & memorability, communication & collaboration, and motivation & self-reflection. The results of two studies in the area of information recall showed that participants who used a physical bar chart retained more information compared to the digital counterpart. Particularly facts about maximum and minimum values were be remembered more efficiently, when they were perceived from a physical visualization. Two explorative studies dealt with the potential of physical visualizations regarding communication and collaboration. The observations revealed the importance on the design and aesthetic of physical visualizations and indicated a great potential for their utilization by audiences with less interest in technology. The results also exposed the current limitations of physical visualizations, especially in contrast to their well-researched digital counterparts. In the area of motivation we present the design and evaluation of the Activity Sculptures project. We conducted a field study, in which we investigated physical visualizations of personal running activity. It was discovered that these sculptures generated curiosity and experimentation regarding the personal running behavior as well as evoked social dynamics such as discussions and competition. Based on the findings of the aforementioned studies this thesis concludes with two theoretical contributions on the design and potential of physical visualizations. On the one hand, it proposes a conceptual framework for material representations of personal data by describing a production and consumption lens. The goal is to encourage artists and designers working in the field of personal informatics to harness the interactive capabilities afforded by digital fabrication and the potential of material representations. On the other hand we give a first classification and performance rating of physical variables including 14 dimensions grouped into four categories. This complements the undertaking of providing researchers and designers with guidance and inspiration to uncover alternative strategies for representing data physically and building effective physical visualizations.Um aus abstrakten Daten konkrete Aussagen, komplexe Zusammenhänge oder überraschende Einsichten gewinnen zu können, müssen diese oftmals in eine, für den Menschen, anschauliche Form gebracht werden. Eine weitverbreitete und gut erforschte Möglichkeiten ist die Darstellung von Daten in visueller Form. Weniger erforschte Varianten sind das Verkörpern von Daten durch Geräusche, Gerüche oder physisch ertastbare Objekte und Formen. Diese Arbeit konzentriert sich auf die letztgenannte Variante und untersucht wie die menschlichen Fähigkeiten mit der physischenWelt zu interagieren dafür genutzt werden können, das Analysieren und Explorieren von Daten zu unterstützen. Der technische Fortschritt in der digitalen Fertigung vereinfacht und beschleunigt die Produktion von physischen Objekten und reduziert dabei deren Kosten. Lasercutter und 3D Drucker ermöglichen beispielsweise eine maßgerechte Fertigung physischer Visualisierungen verschiedenster Ausprägungen hinsichtlich Größe und Material. Dadurch ergibt sich zum ersten Mal die Gelegenheit, das Potenzial von physischen Visualisierungen in größerem Umfang zu erforschen. Der erste Teil der Arbeit skizziert insgesamt sechs Prototypen physischer Visualisierungen, wobei sowohl statische Beispiele beschrieben werden, als auch Exemplare die durch digital Inhalte erweitert werden oder dynamisch auf Interaktionen reagieren können. Basierend auf den Untersuchungen dieser Prototypen wurden drei vielversprechende Bereiche für das Potenzial physischer Visualisierungen ermittelt und genauer untersucht: Wahrnehmung & Einprägsamkeit, Kommunikation & Zusammenarbeit sowie Motivation & Selbstreflexion. Die Ergebnisse zweier Studien zur Wahrnehmung und Einprägsamkeit von Informationen zeigten, dass sich Teilnehmer mit einem physischen Balkendiagramm an deutlich mehr Informationen erinnern konnten, als Teilnehmer, die eine digitale Visualisierung nutzten. Insbesondere Fakten über Maximal- und Minimalwerte konnten besser im Gedächtnis behalten werden, wenn diese mit Hilfe einer physischen Visualisierung wahrgenommen wurden. Zwei explorative Studien untersuchten das Potenzial von physischen Visualisierungen im Bereich der Kommunikation mit Informationen sowie der Zusammenarbeit. Die Ergebnisse legten einerseits offen wie wichtig ein ausgereiftes Design und die Ästhetik von physischen Visualisierungen ist, deuteten anderseits aber auch darauf hin, dass Menschen mit geringem Interesse an neuen Technologien eine interessante Zielgruppe darstellen. Die Studien offenbarten allerdings auch die derzeitigen Grenzen von physischen Visualisierungen, insbesondere im Vergleich zu ihren gut erforschten digitalen Pendants. Im Bereich der Motivation und Selbstreflexion präsentieren wir die Entwicklung und Auswertung des Projekts Activity Sculptures. In einer Feldstudie über drei Wochen erforschten wir physische Visualisierungen, die persönliche Laufdaten repräsentieren. Unsere Beobachtungen und die Aussagen der Teilnehmer ließen darauf schließen, dass die Skulpturen Neugierde weckten und zum Experimentieren mit dem eigenen Laufverhalten einluden. Zudem konnten soziale Dynamiken entdeckt werden, die beispielsweise durch Diskussion aber auch Wettbewerbsgedanken zum Ausdruck kamen. Basierend auf den gewonnen Erkenntnissen durch die erwähnten Studien schließt diese Arbeit mit zwei theoretischen Beiträgen, hinsichtlich des Designs und des Potenzials von physischen Visualisierungen, ab. Zuerst wird ein konzeptionelles Framework vorgestellt, welches die Möglichkeiten und den Nutzen physischer Visualisierungen von persönlichen Daten veranschaulicht. Für Designer und Künstler kann dies zudem als Inspirationsquelle dienen, wie das Potenzial neuer Technologien, wie der digitalen Fabrikation, zur Darstellung persönlicher Daten in physischer Form genutzt werden kann. Des Weiteren wird eine initiale Klassifizierung von physischen Variablen vorgeschlagen mit insgesamt 14 Dimensionen, welche in vier Kategorien gruppiert sind. Damit vervollständigen wir unser Ziel, Forschern und Designern Inspiration und Orientierung zu bieten, um neuartige und effektvolle physische Visualisierungen zu erschaffen

    Sustainability in design: now! Challenges and opportunities for design research, education and practice in the XXI century

    Get PDF
    Copyright @ 2010 Greenleaf PublicationsLeNS project funded by the Asia Link Programme, EuropeAid, European Commission

    Proceedings of DRS Learn X Design 2019: Insider Knowledge

    Get PDF
    corecore