5,143 research outputs found

    Online discussion compensates for suboptimal timing of supportive information presentation in a digitally supported learning environment

    Get PDF
    This study used a sequential set-up to investigate the consecutive effects of timing of supportive information presentation (information before vs. information during the learning task clusters) in interactive digital learning materials (IDLMs) and type of collaboration (personal discussion vs. online discussion) in computer-supported collaborative learning (CSCL) on student knowledge construction. Students (N = 87) were first randomly assigned to the two information presentation conditions to work individually on a case-based assignment in IDLM. Students who received information during learning task clusters tended to show better results on knowledge construction than those who received information only before each cluster. The students within the two separate information presentation conditions were then randomly assigned to pairs to discuss the outcomes of their assignments under either the personal discussion or online discussion condition in CSCL. When supportive information had been presented before each learning task cluster, online discussion led to better results than personal discussion. When supportive information had been presented during the learning task clusters, however, the online and personal discussion conditions had no differential effect on knowledge construction. Online discussion in CSCL appeared to compensate for suboptimal timing of presentation of supportive information before the learning task clusters in IDLM

    The expertise reversal effect is a variant of the more general element interactivity effect

    Get PDF
    © 2016, Springer Science+Business Media New York. Within the framework of cognitive load theory, the element interactivity and the expertise reversal effects usually are not treated as closely related effects. We argue that the two effects may be intertwined with the expertise reversal effect constituting a particular example of the element interactivity effect. Specifically, the element interactivity effect relies on changes in element interactivity due to changes in the type of material being learned, while the expertise reversal effect also relies on changes in relative levels of element interactivity but in this case, due to changes in relative levels of expertise. If so, both effects rely on equivalent changes in element interactivity with the changes induced by different factors. Empirical evidence is used to support this contention

    Cognitive load theory, educational research, and instructional design: some food for thought

    Get PDF
    Cognitive load is a theoretical notion with an increasingly central role in the educational research literature. The basic idea of cognitive load theory is that cognitive capacity in working memory is limited, so that if a learning task requires too much capacity, learning will be hampered. The recommended remedy is to design instructional systems that optimize the use of working memory capacity and avoid cognitive overload. Cognitive load theory has advanced educational research considerably and has been used to explain a large set of experimental findings. This article sets out to explore the open questions and the boundaries of cognitive load theory by identifying a number of problematic conceptual, methodological and application-related issues. It concludes by presenting a research agenda for future studies of cognitive load

    Reviews

    Get PDF
    Successful Instructional Diagrams by Ric Lowe, London, Kogan Page, 1993. ISBN: 0–7494–0711–5

    EFFECTS OF SEGMENTATION OF INSTRUCTIONAL ANIMATION IN FACILITATING LEARNING

    Get PDF
    The aim of this study was to investigate the effects of segmented-animation, playpause- animation and continuous-animation in facilitating learning of low prior knowledge learners. A courseware prototype entitled Transmission Media was developed for the research purpose. The courseware contains nine animations on various topics in Transmission Media. Pre-test and post-test experimental design was employed on three different groups respectively. The data collected were analyzed statistically by using one-way between-groups ANOVA with post-hoc comparisons. Apparently, the result suggests that segmented-animation was significantly more effective than play-pause-animation and continuous-animation in enhancing students’ learning performance. The result indicates that segmented-animation was beneficial for students in conducting adequate cognitive processes of the information depicted in the animation. Furthermore, the result shows that allowing students to decide the segmentation in play-pause-animation condition does not necessarily promotes better learning. This was due to low prior knowledge students’ inability in deciding the appropriate stop points in animation and/or play-pause-replay button design that might causes split attention effect resulting extraneous cognitive load throughout the learning process

    Examining the Effects of Interactive Dynamic Multimedia and Direct Touch Input on Performance of a Procedural Motor Task

    Get PDF
    Ownership of mobile devices, such as tablets and smartphones, has quickly risen in the last decade. Unsurprisingly, they are now being integrated into the training and classroom setting. Specifically, the U.S. Army has mapped out a plan in the Army Learning Model of 2015 to utilize mobile devices for training purposes. However, before these tools can be used effectively, it is important to identify how the tablets\u27 unique properties can be leveraged. For this dissertation, the touch interface and the interactivity that tablets afford were investigated using a procedural-motor task. The procedural motor task was the disassembly procedures of a M4 carbine. This research was motivated by cognitive psychology theories, including Cognitive Load Theory and Embodied Cognition. In two experiments, novices learned rifle disassembly procedures in a narrated multimedia presentation presented on a tablet and then were tested on what they learned during the multimedia training involving a virtual rifle by performing a rifle disassembly on a physical rifle, reassembling the rifle, and taking a written recall test about the disassembly procedures. Spatial ability was also considered as a subject variable. Experiment 1 examined two research questions. The primary research question was whether including multiple forms of interactivity in a multimedia presentation resulted in higher learning outcomes. The secondary research question in Experiment 1 was whether dynamic multimedia fostered better learning outcomes than equivalent static multimedia. To examine the effects of dynamism and interactivity on learning, four multimedia conditions of varying levels of interactivity and dynamism were used. One condition was a 2D phase diagram depicting the before and after of the step with no animation or interactivity. Another condition utilized a non-interactive animation in which participants passively watched an animated presentation of the disassembly procedures. A third condition was the interactive animation in which participants could control the pace of the presentation by tapping a button. The last condition was a rifle disassembly simulation in which participants interacted with a virtual rifle to learn the disassembly procedures. A comparison of the conditions by spatial ability yielded the following results. Interactivity, overall, improved outcomes on the performance measures. However, high spatials outperformed low spatials in the simulation condition and the 2D phase diagram condition. High spatials seemed to be able to compensate for low interactivity and dynamism in the 2D phase diagram condition while enhancing their performance in the rifle disassembly simulation condition. In Experiment 2, the touchscreen interface was examined by investigating how gestures and input modality affected learning the disassembly procedures. Experiment 2 had two primary research questions. The first was whether gestures facilitate learning a procedural-motor task through embodied learning. The second was whether direct touch input using resulted in higher learning outcomes than indirect mouse input. To examine the research questions, three different variations of the rifle disassembly simulation were used. One was identical to that of Experiment 1. Another incorporated gestures to initiate the animation whereby participants traced a gesture arrow representing the motion of the component to learn the procedures. The third condition utilized the same interface as the initial rifle disassembly simulation but included dummy gesture arrows that displayed only visual information but did not respond to gesture. This condition was included to see the effects (if any) of the gesture arrows in isolation of the gesture component. Furthermore, direct touch input was compared to indirect mouse input. Once again, spatial ability also was considered. Results from Experiment 2 were inconclusive as no significant effects were found. This may have been due to a ceiling effect of performance. However, spatial ability was a significant predictor of performance across all conditions. Overall, the results of the two experiments support the use of multimedia on a tablet to train a procedural-motor task. In line with vision of ALM 2015, the research support incorporating tablets into U.S. Army training curriculum

    Evaluation of World Wide Web-based Lessons for a First Year Dental Biochemistry Course

    Get PDF
    First year dental students at The University of Texas Dental Branch at Houston (Dental Branch) are required to take a basic biochemistry course. To facilitate learning and allow student self-assessment of their progress, WWW-based lessons covering intermediary metabolism were developed as a supplement to traditional lectures. Lesson design combined text, graphics, and animations and included learner control, links to other learning resources, and practice exercises and exams with immediate feedback. Results from an on-line questionnaire completed by students in two different classes showed that they completed 50% of the lessons and spent an average of 4 hrs. on-line. A majority of the students either agreed or strongly agreed that practice exercises were helpful, that the ability to control the pace of the lessons was important, that the lesson structure and presentation was easy to follow, that the illustrations, animations, and hyperlinks were helpful, and that the lessons were effective as a review. The very positive response to the WWW-based lessons indicates the usefulness of this approach as a study aid for dental students
    corecore