65,921 research outputs found

    Arithmetic circuits: the chasm at depth four gets wider

    Get PDF
    In their paper on the "chasm at depth four", Agrawal and Vinay have shown that polynomials in m variables of degree O(m) which admit arithmetic circuits of size 2^o(m) also admit arithmetic circuits of depth four and size 2^o(m). This theorem shows that for problems such as arithmetic circuit lower bounds or black-box derandomization of identity testing, the case of depth four circuits is in a certain sense the general case. In this paper we show that smaller depth four circuits can be obtained if we start from polynomial size arithmetic circuits. For instance, we show that if the permanent of n*n matrices has circuits of size polynomial in n, then it also has depth 4 circuits of size n^O(sqrt(n)*log(n)). Our depth four circuits use integer constants of polynomial size. These results have potential applications to lower bounds and deterministic identity testing, in particular for sums of products of sparse univariate polynomials. We also give an application to boolean circuit complexity, and a simple (but suboptimal) reduction to polylogarithmic depth for arithmetic circuits of polynomial size and polynomially bounded degree

    Dynamic MDS Matrices for Substantial Cryptographic Strength

    Get PDF
    Ciphers get their strength from the mathematical functions of confusion and diffusion, also known as substitution and permutation. These were the basics of classical cryptography and they are still the basic part of modern ciphers. In block ciphers diffusion is achieved by the use of Maximum Distance Separable (MDS) matrices. In this paper we present some methods for constructing dynamic (and random) MDS matrices.Comment: Short paper at WISA'10, 201

    On Quantum Field Theory with Nonzero Minimal Uncertainties in Positions and Momenta

    Get PDF
    We continue studies on quantum field theories on noncommutative geometric spaces, focusing on classes of noncommutative geometries which imply ultraviolet and infrared modifications in the form of nonzero minimal uncertainties in positions and momenta. The case of the ultraviolet modified uncertainty relation which has appeared from string theory and quantum gravity is covered. The example of euclidean Ď•4\phi^4-theory is studied in detail and in this example we can now show ultraviolet and infrared regularisation of all graphs.Comment: LaTex, 32 page

    A Recipe for Constructing Frustration-Free Hamiltonians with Gauge and Matter Fields in One and Two Dimensions

    Full text link
    State sum constructions, such as Kuperberg's algorithm, give partition functions of physical systems, like lattice gauge theories, in various dimensions by associating local tensors or weights, to different parts of a closed triangulated manifold. Here we extend this construction by including matter fields to build partition functions in both two and three space-time dimensions. The matter fields introduces new weights to the vertices and they correspond to Potts spin configurations described by an A\mathcal{A}-module with an inner product. Performing this construction on a triangulated manifold with a boundary we obtain the transfer matrices which are decomposed into a product of local operators acting on vertices, links and plaquettes. The vertex and plaquette operators are similar to the ones appearing in the quantum double models (QDM) of Kitaev. The link operator couples the gauge and the matter fields, and it reduces to the usual interaction terms in known models such as Z2\mathbb{Z}_2 gauge theory with matter fields. The transfer matrices lead to Hamiltonians that are frustration-free and are exactly solvable. According to the choice of the initial input, that of the gauge group and a matter module, we obtain interesting models which have a new kind of ground state degeneracy that depends on the number of equivalence classes in the matter module under gauge action. Some of the models have confined flux excitations in the bulk which become deconfined at the surface. These edge modes are protected by an energy gap provided by the link operator. These properties also appear in "confined Walker-Wang" models which are 3D models having interesting surface states. Apart from the gauge excitations there are also excitations in the matter sector which are immobile and can be thought of as defects like in the Ising model. We only consider bosonic matter fields in this paper.Comment: 52 pages, 58 figures. This paper is an extension of arXiv:1310.8483 [cond-mat.str-el] with the inclusion of matter fields. This version includes substantial changes with a connection made to confined Walker-Wang models along the lines of arXiv:1208.5128 and subsequent works. Accepted for publication in JPhys

    Chaotic Compilation for Encrypted Computing: Obfuscation but Not in Name

    Get PDF
    An `obfuscation' for encrypted computing is quantified exactly here, leading to an argument that security against polynomial-time attacks has been achieved for user data via the deliberately `chaotic' compilation required for security properties in that environment. Encrypted computing is the emerging science and technology of processors that take encrypted inputs to encrypted outputs via encrypted intermediate values (at nearly conventional speeds). The aim is to make user data in general-purpose computing secure against the operator and operating system as potential adversaries. A stumbling block has always been that memory addresses are data and good encryption means the encrypted value varies randomly, and that makes hitting any target in memory problematic without address decryption, yet decryption anywhere on the memory path would open up many easily exploitable vulnerabilities. This paper `solves (chaotic) compilation' for processors without address decryption, covering all of ANSI C while satisfying the required security properties and opening up the field for the standard software tool-chain and infrastructure. That produces the argument referred to above, which may also hold without encryption.Comment: 31 pages. Version update adds "Chaotic" in title and throughout paper, and recasts abstract and Intro and other sections of the text for better access by cryptologists. To the same end it introduces the polynomial time defense argument explicitly in the final section, having now set that denouement out in the abstract and intr
    • …
    corecore