2,174 research outputs found

    The Predictive Power of Zero Intelligence in Financial Markets

    Full text link
    Standard models in economics stress the role of intelligent agents who maximize utility. However, there may be situations where, for some purposes, constraints imposed by market institutions dominate intelligent agent behavior. We use data from the London Stock Exchange to test a simple model in which zero intelligence agents place orders to trade at random. The model treats the statistical mechanics of order placement, price formation, and the accumulation of revealed supply and demand within the context of the continuous double auction, and yields simple laws relating order arrival rates to statistical properties of the market. We test the validity of these laws in explaining the cross-sectional variation for eleven stocks. The model explains 96% of the variance of the bid-ask spread, and 76% of the variance of the price diffusion rate, with only one free parameter. We also study the market impact function, describing the response of quoted prices to the arrival of new orders. The non-dimensional coordinates dictated by the model approximately collapse data from different stocks onto a single curve. This work is important from a practical point of view because it demonstrates the existence of simple laws relating prices to order flows, and in a broader context, because it suggests that there are circumstances where institutions are more important than strategic considerations

    Dynamical selection of Nash equilibria using Experience Weighted Attraction Learning: emergence of heterogeneous mixed equilibria

    Get PDF
    We study the distribution of strategies in a large game that models how agents choose among different double auction markets. We classify the possible mean field Nash equilibria, which include potentially segregated states where an agent population can split into subpopulations adopting different strategies. As the game is aggregative, the actual equilibrium strategy distributions remain undetermined, however. We therefore compare with the results of Experience-Weighted Attraction (EWA) learning, which at long times leads to Nash equilibria in the appropriate limits of large intensity of choice, low noise (long agent memory) and perfect imputation of missing scores (fictitious play). The learning dynamics breaks the indeterminacy of the Nash equilibria. Non-trivially, depending on how the relevant limits are taken, more than one type of equilibrium can be selected. These include the standard homogeneous mixed and heterogeneous pure states, but also \emph{heterogeneous mixed} states where different agents play different strategies that are not all pure. The analysis of the EWA learning involves Fokker-Planck modeling combined with large deviation methods. The theoretical results are confirmed by multi-agent simulations.Comment: 35 pages, 16 figure

    Automated Auction Mechanism Design with Competing Markets

    Full text link
    Resource allocation is a major issue in multiple areas of computer science. Despite the wide range of resource types across these areas, for example real commodities in e-commerce and computing resources in distributed computing, auctions are commonly used in solving the optimization problems involved in these areas, since well designed auctions achieve desirable economic outcomes. Auctions are markets with strict regulations governing the information available to traders in the market and the possible actions they can take. Auction mechanism design aims to manipulate the rules of an auction in order to achieve specific goals. Economists traditionally use mathematical methods, mainly game theory, to analyze auctions and design new auction forms. However, due to the high complexity of auctions, the mathematical models are typically simplified to obtain results, and this makes it difficult to apply results derived from such models to market environments in the real world. As a result, researchers are turning to empirical approaches. Following this line of work, we present what we call a grey-box approach to automated auction mechanism design using reinforcement learning and evolutionary computation methods. We first describe a new strategic game, called \cat, which were designed to run multiple markets that compete to attract traders and make profit. The CAT game enables us to address the imbalance between prior work in this field that studied auctions in an isolated environment and the actual competitive situation that markets face. We then define a novel, parameterized framework for auction mechanisms, and present a classification of auction rules with each as a building block fitting into the framework. Finally we evaluate the viability of building blocks, and acquire auction mechanisms by combining viable blocks through iterations of CAT games. We carried out experiments to examine the effectiveness of the grey-box approach. The best mechanisms we learnt were able to outperform the standard mechanisms against which learning took place and carefully hand-coded mechanisms which won tournaments based on the CAT game. These best mechanisms were also able to outperform mechanisms from the literature even when the evaluation did not take place in the context of CAT games. These results suggest that the grey-box approach can generate robust double auction mechanisms and, as a consequence, is an effective approach to automated mechanism design. The contributions of this work are two-fold. First, the grey-box approach helps to design better auction mechanisms which can play a central role in solutions to resource allocation problems in various application domains of computer science. Second, the parameterized view and the reinforcement learning-based search method can be used in other strategic, competitive situations where decision making processes are complex and difficult to design and evaluate manually

    Market-based Allocation of Local Flexibility in Smart Grids: A Mechanism Design Approach

    Get PDF

    Rational Individual Behavior in Markets and Social Choice Processes

    Get PDF
    This paper reviews a series of paradoxes that exist in the experimental economics literature. These paradoxes are instances in which otherwise accurate models of markets and social choice processes fail to capture the data of experiments. A loosely developed theory called The Discovered Preference Hypothesis is advanced in the paper as an explanation. Behavior seems to go through stages of rationality that begin with a type of myopia when faced with unfamiliar tasks. With incentives and practice, which might take the form of repeated decisions in the experimental work, (but might include play, banter, discussions with others, stages of commitment, etc.) the myopia gives way to what appears to be a. stage of more considered choices that reflect stable attitudes or preferences (as opposed to the labile attitudes identified by psychologists). Social institutions are seen as playing a role in the attainment of a third stage of rationality in which individual decisions incorporate the rationality of others, or the lack of it, in their own decisions
    • …
    corecore