510 research outputs found

    Objective assessment and feedback generation in dental surgical simulation : a framework based on correlating procedure and outcome

    Get PDF
    Fine motor skill is indispensable for a dentist. As in many other medical fields of study, the traditional surgical master-apprentice model is widely adopted in dental education. Recently, virtual reality (VR) simulators have been employed as supplementary components to the traditional skill-training curriculum, and numerous dental VR systems have been developed academically and commercially. However, the full promise of such systems has yet to be realized due to the lack of sufficient support for formative feedback. Without such a mechanism, evaluation still demands dedicated time of experts in scarce supply. With the aim to fill the gap of formative assessment using VR simulators in skill training in dentistry, this thesis presents a framework to objectively assess the surgical skill and generate formative feedback automatically. VR simulators enable collecting detailed data on relevant metrics throughout a procedure. Our approach to formative feedback is to correlate procedure metrics with the procedure outcome in order to identify the portions of a procedure that need to be improved. Prior to the correlation, the procedure outcome needs to be evaluated. The scoring algorithm designed in this thesis provides an overall score and identifies specific errors and their severity. Building upon this, we developed techniques to identify the portion of the procedure responsible for the errors. Specifically, for the errors in the outcome the responsible portions of the procedure are identified based on correlation of location of the error. For some types of feedback one mode may be more suitable than another. Tutoring formative feedback are provided using the video- and haptic- modalities. The effectiveness of the feedback systems have been evaluated with the dental students with randomized controlled trials and the findings show the feedback mechanisms to be effective and have potentials to use as valuable supplemental training resources

    A Virtual University Infrastructure For Orthopaedic Surgical Training With Integrated Simulation

    No full text
    This thesis pivots around the fulcrum of surgical, educational and technological factors. Whilst there is no single conclusion drawn, it is a multidisciplinary thesis exploring the juxtaposition of different academic domains that have a significant influence upon each other. The relationship centres on the engineering and computer science factors in learning technologies for surgery. Following a brief introduction to previous efforts developing surgical simulation, this thesis considers education and learning in orthopaedics, the design and building of a simulator for shoulder surgery. The thesis considers the assessment of such tools and embedding into a virtual learning environment. It explains how the performed experiments clarified issues and their actual significance. This leads to discussion of the work and conclusions are drawn regarding the progress of integration of distributed simulation within the healthcare environment, suggesting how future work can proceed

    HUMAN-ROBOT COLLABORATION IN ROBOTIC-ASSISTED SURGICAL TRAINING

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Virtual Reality – A New Era in Surgical Training

    Get PDF

    Video Communication in Telemedicine

    Get PDF

    Technical and conceptual considerations for using animated stimuli in studies of animal behavior

    Get PDF
    © The Author (2016). Rapid technical advances in the field of computer animation (CA) and virtual reality (VR) have opened new avenues in animal behavior research. Animated stimuli are powerful tools as they offer standardization, repeatability, and complete control over the stimulus presented, thereby "reducing" and "replacing" the animals used, and "refining" the experimental design in line with the 3Rs. However, appropriate use of these technologies raises conceptual and technical questions. In this review, we offer guidelines for common technical and conceptual considerations related to the use of animated stimuli in animal behavior research. Following the steps required to create an animated stimulus, we discuss (I) the creation, (II) the presentation, and (III) the validation of CAs and VRs. Although our review is geared toward computer-graphically designed stimuli, considerations on presentation and validation also apply to video playbacks. CA and VR allow both new behavioral questions to be addressed and existing questions to be addressed in new ways, thus we expect a rich future for these methods in both ultimate and proximate studies of animal behavior

    A virtual university infrastructure for orthopaedic surgical training with integrated simulation

    Get PDF
    This thesis pivots around the fulcrum of surgical, educational and technological factors. Whilst there is no single conclusion drawn, it is a multidisciplinary thesis exploring the juxtaposition of different academic domains that have a significant influence upon each other. The relationship centres on the engineering and computer science factors in learning technologies for surgery. Following a brief introduction to previous efforts developing surgical simulation, this thesis considers education and learning in orthopaedics, the design and building of a simulator for shoulder surgery. The thesis considers the assessment of such tools and embedding into a virtual learning environment. It explains how the performed experiments clarified issues and their actual significance. This leads to discussion of the work and conclusions are drawn regarding the progress of integration of distributed simulation within the healthcare environment, suggesting how future work can proceed.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    corecore