524 research outputs found

    Preliminary assessment of soil moisture over vegetation

    Get PDF
    Modeling of surface energy fluxes was combined with in-situ measurement of surface parameters, specifically the surface sensible heat flux and the substrate soil moisture. A vegetation component was incorporated in the atmospheric/substrate model and subsequently showed that fluxes over vegetation can be very much different than those over bare soil for a given surface-air temperature difference. The temperature signatures measured by a satellite or airborne radiometer should be interpreted in conjunction with surface measurements of modeled parameters. Paradoxically, analyses of the large-scale distribution of soil moisture availability shows that there is a very high correlation between antecedent precipitation and inferred surface moisture availability, even when no specific vegetation parameterization is used in the boundary layer model. Preparatory work was begun in streamlining the present boundary layer model, developing better algorithms for relating surface temperatures to substrate moisture, preparing for participation in the French HAPEX experiment, and analyzing aircraft microwave and radiometric surface temperature data for the 1983 French Beauce experiments

    Soil temperature investigations using satellite acquired thermal-infrared data in semi-arid regions

    Get PDF
    Thermal-infrared data from the Heat Capacity Mapping Mission satellite were used to map the spatial distribution of diurnal surface temperatures and to estimate mean annual soil temperatures (MAST) and annual surface temperature amplitudes (AMP) in semi-arid east central Utah. Diurnal data with minimal snow and cloud cover were selected for five dates throughout a yearly period and geometrically co-registered. Rubber-sheet stretching was aided by the WARP program which allowed preview of image transformations. Daytime maximum and nighttime minimum temperatures were averaged to generation average daily temperature (ADT) data set for each of the five dates. Five ADT values for each pixel were used to fit a sine curve describing the theoretical annual surface temperature response as defined by a solution of a one-dimensinal heat flow equation. Linearization of the equation produced estimates of MAST and AMP plus associated confidence statistics. MAST values were grouped into classes and displayed on a color video screen. Diurnal surface temperatures and MAST were primarily correlated with elevation

    A Review of Current Methodologies for Regional Evapotranspiration Estimation from Remotely Sensed Data

    Get PDF
    An overview of the commonly applied evapotranspiration (ET) models using remotely sensed data is given to provide insight into the estimation of ET on a regional scale from satellite data. Generally, these models vary greatly in inputs, main assumptions and accuracy of results, etc. Besides the generally used remotely sensed multi-spectral data from visible to thermal infrared bands, most remotely sensed ET models, from simplified equations models to the more complex physically based two-source energy balance models, must rely to a certain degree on ground-based auxiliary measurements in order to derive the turbulent heat fluxes on a regional scale. We discuss the main inputs, assumptions, theories, advantages and drawbacks of each model. Moreover, approaches to the extrapolation of instantaneous ET to the daily values are also briefly presented. In the final part, both associated problems and future trends regarding these remotely sensed ET models were analyzed to objectively show the limitations and promising aspects of the estimation of regional ET based on remotely sensed data and ground-based measurements

    Surface Soil Moisture Retrievals from Remote Sensing:Current Status, Products & Future Trends

    Get PDF
    Advances in Earth Observation (EO) technology, particularly over the last two decades, have shown that soil moisture content (SMC) can be measured to some degree or other by all regions of the electromagnetic spectrum, and a variety of techniques have been proposed to facilitate this purpose. In this review we provide a synthesis of the efforts made during the last 20 years or so towards the estimation of surface SMC exploiting EO imagery, with a particular emphasis on retrievals from microwave sensors. Rather than replicating previous overview works, we provide a comprehensive and critical exploration of all the major approaches employed for retrieving SMC in a range of different global ecosystems. In this framework, we consider the newest techniques developed within optical and thermal infrared remote sensing, active and passive microwave domains, as well as assimilation or synergistic approaches. Future trends and prospects of EO for the accurate determination of SMC from space are subject to key challenges, some of which are identified and discussed within. It is evident from this review that there is potential for more accurate estimation of SMC exploiting EO technology, particularly so, by exploring the use of synergistic approaches between a variety of EO instruments. Given the importance of SMC in Earth’s land surface interactions and to a large range of applications, one can appreciate that its accurate estimation is critical in addressing key scientific and practical challenges in today’s world such as food security, sustainable planning and management of water resources. The launch of new, more sophisticated satellites strengthens the development of innovative research approaches and scientific inventions that will result in a range of pioneering and ground-breaking advancements in the retrievals of soil moisture from space

    Novel Satellite-Based Methodologies for Multi-Sensor and Multi-Scale Environmental Monitoring to Preserve Natural Capital

    Get PDF
    Global warming, as the biggest manifestation of climate change, has changed the distribution of water in the hydrological cycle by increasing the evapotranspiration rate resulting in anthropogenic and natural hazards adversely affecting modern and past human properties and heritage in different parts of the world. The comprehension of environmental issues is critical for ensuring our existence on Earth and environmental sustainability. Environmental modeling can be described as a simplified form of a real system that enhances our knowledge of how a system operates. Such models represent the functioning of various processes of the environment, such as processes related to the atmosphere, hydrology, land surface, and vegetation. The environmental models can be applied on a wide range of spatiotemporal scales (i.e. from local to global and from daily to decadal levels); and they can employ various types of models (e.g. process-driven, empirical or data-driven, deterministic, stochastic, etc.). Satellite remote sensing and Earth Observation techniques can be utilized as a powerful tool for flood mapping and monitoring. By increasing the number of satellites orbiting around the Earth, the spatial and temporal coverage of environmental phenomenon on the planet has in-creased. However, handling such a massive amount of data was a challenge for researchers in terms of data curation and pre-processing as well as required computational power. The advent of cloud computing platforms has eliminated such steps and created a great opportunity for rapid response to environmental crises. The purpose of this study was to gather state-of-the-art remote sensing and/or earth observation techniques and to further the knowledge concerned with any aspect of the use of remote sensing and/or big data in the field of geospatial analysis. In order to achieve the goals of this study, some of the water-related climate-change phenomena were studied via different mathematical, statistical, geomorphological and physical models using different satellite and in-situ data on different centralized and decentralized computational platforms. The structure of this study was divided into three chapters with their own materials, methodologies and results including: (1) flood monitoring; (2) soil water balance modeling; and (3) vegetation monitoring. The results of this part of the study can be summarize in: 1) presenting innovative procedures for fast and semi-automatic flood mapping and monitoring based on geomorphic methods, change detection techniques and remote sensing data; 2) modeling soil moisture and water balance components in the root zone layer using in-situ, drone and satellite data; incorporating downscaling techniques; 3) combining statistical methods with the remote sensing data for detecting inner anomalies in the vegetation covers such as pest emergence; 4) stablishing and disseminating the use of cloud computation platforms such as Google Earth Engine in order to eliminate the unnecessary steps for data curation and pre-processing as well as required computational power to handle the massive amount of RS data. As a conclusion, this study resulted in provision of useful information and methodologies for setting up strategies to mitigate damage and support the preservation of areas and landscape rich in cultural and natural heritage

    Estimation of Surface Moisture Content and Evapotranspiration Using Weightage Approach.

    Get PDF
    Soil moisture (MC) and evapotranspiration (ET) are considered as the most significant boundary conditions controlling most of the hydrological cycle’s processes. However, monitoring them continuously over large areas using the high temporal-resolution optical satellites is very demanding. Satellites such as the Advanced Very High Resolution Radiometer (AVHRR) and the Moderate Resolution Imaging Spectroradiometer (MODIS), have a coarse spatial resolution in their images. Thus it not only impedes the acquisition of an accurate MC and ET but also represents multispectral reflections from the holistic surface features. This beside their dependence on vegetation and ground coefficient when assessing MC and ET. The study aims to enhance the spatial accuracy by weighting the MC produced from different surface cover classes within the pixel. MC for each pixel is segmented into three (3) different classes namely urban, vegetation and multi surface cover according to their respective MC weightage. Secondly, to generate an improved actual ETa map by overlaying the segmented MC with a rectified ETo. Images from AVHRR and MODIS satellites were selected in order to generate MC and ET maps. Two powerful MC algorithms were used based on land Surface Temperature (Ts), vegetation Indices (VI) and field measurements of MC; which were conducted at variable depths to examine the depth influence on MC and Ts magnitudes

    Effects of rapid urbanisation on the urban thermal environment between 1990 and 2011 in Dhaka Megacity, Bangladesh

    Get PDF
    This study investigates the influence of land-use/land-cover (LULC) change on land surface temperature (LST) in Dhaka Megacity, Bangladesh during a period of rapid urbanisation. LST was derived from Landsat 5 TM scenes captured in 1990, 2000 and 2011 and compared to contemporaneous LULC maps. We compared index-based and linear spectral mixture analysis (LSMA) techniques for modelling LST. LSMA derived biophysical parameters corresponded more strongly to LST than those produced using index-based parameters. Results indicated that vegetation and water surfaces had relatively stable LST but it increased by around 2 °C when these surfaces were converted to built-up areas with extensive impervious surfaces. Knowledge of the expected change in LST when one land-cover is converted to another can inform land planners of the potential impact of future changes and urges the development of better management strategies

    Thermal Infrared Remote Sensing for Analysis of Landscape Ecological Processes: Current Insights and Trends

    Get PDF
    NASA or NOAA Earth-observing satellites are not the only space-based TIR platforms. The European Space Agency (ESA), the Chinese, and other countries have in orbit or plan to launch TIR remote sensing systems. Satellite remote sensing provides an excellent opportunity to study land-atmosphere energy exchanges at the regional scale. A predominant application of TIR data has been in inferring evaporation, evapotranspiration (ET), and soil moisture. In addition to using TIR data for ET and soil moisture analysis over vegetated surfaces, there is also a need for using these data for assessment of drought conditions. The concept of ecological thermodynamics provides a quantification of surface energy fluxes for landscape characterization in relation to the overall amount of energy input and output from specific land cover types
    corecore