10,670 research outputs found

    The Influence of Emotional Material on Encoding and Retrieving Intentions: An ERP Study in Younger and Older Adults

    Get PDF
    Prospective memory is a cognitive process that comprises the encoding and maintenance of an intention until the appropriate moment of its retrieval. It is of highly relevance for an independent everyday life, especially in older adults; however, there is ample evidence that prospective memory declines with increasing age. Because most studies have used neutral stimuli, it is still an open question how emotional factors influence age-related differences in prospective remembering. The aim of the study was to investigate the influence of emotional material on prospective memory encoding, monitoring, maintaining, and retrieval in younger and older adults using behavioral and electrophysiological measures. We tested 24 younger adults (M = 26.4 years) and 20 older adults (M = 68.1 years) using a picture one-back task as ongoing activity with an embedded prospective memory instruction. The experimental task consisted of three sessions. In each session, participants had to encode series of images that represented the prospective memory cues for the consecutive block. The images were either of pleasant, unpleasant, or neutral valence. The pictures used in the ongoing task were likewise of pleasant, unpleasant, or neutral valence. Event-related potentials (ERPs) were recorded to assess the neural correlates of intention encoding, maintenance, and self-initiated retrieval. We did not find age differences between younger and older adults on the behavioral level. However, the ERP results revealed an interesting pattern that suggested for both age groups elevated attentional processing of emotional cues during encoding indicated by an elevated LPP for the emotional cues. Additionally, younger adults showed increased activity for unpleasant cues. During the maintenance phase, both age groups engaged in strategic monitoring especially for pleasant cues, which led to enhanced sustained positivity. During retrieval, older adults showed increased activity of ERP components related to cue detection and retrieval mainly for pleasant cues indicating enhanced relevance for those cues. In conclusion, emotional material may influence prospective remembering in older adults differently than in younger adults by supporting a mixture of top-down and bottom-up controlled processing. The results demonstrated a negativity bias in younger adults and a positivity bias in older adults

    Temporal precedence of emotion over attention modulations in the lateral amygdala: Intracranial ERP evidence from a patient with temporal lobe epilepsy

    Get PDF
    Previous fMRI studies have reported mixed evidence for the influence of selective attention on amygdala responses to emotional stimuli, with some studies showing "automatic" emotional effects to threat-related stimuli without attention (or even without awareness), but other studies showing a gating of amygdala activity by selective attention with no response to unattended stimuli. We recorded intracranial local field potentials from the intact left lateral amygdala in a human patient prior to surgery for epilepsy and tested, with a millisecond time resolution, for neural responses to fearful faces appearing at either task-relevant or task-irrelevant locations. Our results revealed an early emotional effect in the amygdala arising prior to, and independently of, attentional modulation. However, at a later latency, we found a significant modulation of the differential emotional response when attention was directed toward or away from fearful faces. These results suggest separate influences of emotion and attention on amygdala activation and may help reconcile previous discrepancies concerning the relative responsiveness of the human amygdala to emotional and attentional factors

    Malleability of the self: electrophysiological correlates of the enfacement illusion

    Get PDF
    Self-face representation is fundamentally important for self-identity and self-consciousness. Given its role in preserving identity over time, self-face processing is considered as a robust and stable process. Yet, recent studies indicate that simple psychophysics manipulations may change how we process our own face. Specifically, experiencing tactile facial stimulation while seeing similar synchronous stimuli delivered to the face of another individual seen as in a mirror, induces 'enfacement' illusion, i.e. the subjective experience of ownership of the other’s face and a bias in attributing to the self, facial features of the other person. Here we recorded visual Event-Related Potentials elicited by the presentation of self, other and morphed faces during a self-other discrimination task performed immediately after participants received synchronous and control asynchronous Interpersonal Multisensory Stimulation (IMS). We found that self-face presentation after synchronous as compared to asynchronous stimulation significantly reduced the late positive potential (LPP; 450-750 ms), a reliable electrophysiological marker of self-identification processes. Additionally, enfacement cancelled out the differences in LPP amplitudes produced by self- and other-face during the control condition. These findings represent the first direct neurophysiological evidence that enfacement may affect self-face processing and pave the way to novel paradigms for exploring defective self-representation and self-other interactions

    What does the amygdala contribute to social cognition?

    Get PDF
    The amygdala has received intense recent attention from neuroscientists investigating its function at the molecular, cellular, systems, cognitive, and clinical level. It clearly contributes to processing emotionally and socially relevant information, yet a unifying description and computational account have been lacking. The difficulty of tying together the various studies stems in part from the sheer diversity of approaches and species studied, in part from the amygdala's inherent heterogeneity in terms of its component nuclei, and in part because different investigators have simply been interested in different topics. Yet, a synthesis now seems close at hand in combining new results from social neuroscience with data from neuroeconomics and reward learning. The amygdala processes a psychological stimulus dimension related to saliency or relevance; mechanisms have been identified to link it to processing unpredictability; and insights from reward learning have situated it within a network of structures that include the prefrontal cortex and the ventral striatum in processing the current value of stimuli. These aspects help to clarify the amygdala's contributions to recognizing emotion from faces, to social behavior toward conspecifics, and to reward learning and instrumental behavior

    Event-Related Potentials and Emotion Processing in Child Psychopathology

    Get PDF
    In recent years there has been increasing interest in the neural mechanisms underlying altered emotional processes in children and adolescents with psychopathology. This review provides a brief overview of the most up-to-date findings in the field of Event-Related Potentials (ERPs) to facial and vocal emotional expressions in the most common child psychopathological conditions. In regards to externalising behaviour (i.e. ADHD, CD), ERP studies show enhanced early components to anger, reflecting enhanced sensory processing, followed by reductions in later components to anger, reflecting reduced cognitive-evaluative processing. In regards to internalising behaviour, research supports models of increased processing of threat stimuli especially at later more elaborate and effortful stages. Finally, in autism spectrum disorders abnormalities have been observed at early visual-perceptual stages of processing. An affective neuroscience framework for understanding child psychopathology can be valuable in elucidating underlying mechanisms and inform preventive intervention

    Emotional Brain-Computer Interfaces

    Get PDF
    Research in Brain-computer interface (BCI) has significantly increased during the last few years. In addition to their initial role as assisting devices for the physically challenged, BCIs are now proposed for a wider range of applications. As in any HCI application, BCIs can also benefit from adapting their operation to the emotional state of the user. BCIs have the advantage of having access to brain activity which can provide signicant insight into the user's emotional state. This information can be utilized in two manners. 1) Knowledge of the inuence of the emotional state on brain activity patterns can allow the BCI to adapt its recognition algorithms, so that the intention of the user is still correctly interpreted in spite of signal deviations induced by the subject's emotional state. 2) The ability to recognize emotions can be used in BCIs to provide the user with more natural ways of controlling the BCI through affective modulation. Thus, controlling a BCI by recollecting a pleasant memory can be possible and can potentially lead to higher information transfer rates.\ud These two approaches of emotion utilization in BCI are elaborated in detail in this paper in the framework of noninvasive EEG based BCIs

    The pain matrix reloaded: a salience detection system for the body

    Get PDF
    Neuroimaging and neurophysiological studies have shown that nociceptive stimuli elia salience detection system for the bodycit responses in an extensive cortical network including somatosensory, insular and cingulate areas, as well as frontal and parietal areas. This network, often referred to as the "pain matrix", is viewed as representing the activity by which the intensity and unpleasantness of the perception elicited by a nociceptive stimulus are represented. However, recent experiments have reported (i) that pain intensity can be dissociated from the magnitude of responses in the "pain matrix", (ii) that the responses in the "pain matrix" are strongly influenced by the context within which the nociceptive stimuli appear, and (iii) that non-nociceptive stimuli can elicit cortical responses with a spatial configuration similar to that of the "pain matrix". For these reasons, we propose an alternative view of the functional significance of this cortical network, in which it reflects a system involved in detecting, orienting attention towards, and reacting to the occurrence of salient sensory events. This cortical network might represent a basic mechanism through which significant events for the body's integrity are detected, regardless of the sensory channel through which these events are conveyed. This function would involve the construction of a multimodal cortical representation of the body and nearby space. Under the assumption that this network acts as a defensive system signaling potentially damaging threats for the body, emphasis is no longer on the quality of the sensation elicited by noxious stimuli but on the action prompted by the occurrence of potential threats
    corecore